Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=8 and 
f(n)=-2f(n-1)+1 then find the value of 
f(5).
Answer:

If f(1)=8 f(1)=8 and f(n)=2f(n1)+1 f(n)=-2 f(n-1)+1 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=8 f(1)=8 and f(n)=2f(n1)+1 f(n)=-2 f(n-1)+1 then find the value of f(5) f(5) .\newlineAnswer:
  1. Given f(1)=8f(1) = 8: We are given that f(1)=8f(1) = 8. To find f(5)f(5), we need to find the values of f(2)f(2), f(3)f(3), f(4)f(4), and then f(5)f(5) using the recursive formula f(n)=2f(n1)+1f(n) = -2f(n-1) + 1.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the formula with n=2n=2:
    f(2)=2f(21)+1f(2) = -2f(2-1) + 1
    f(2)=2f(1)+1f(2) = -2f(1) + 1
    f(2)=2(8)+1f(2) = -2(8) + 1
    f(2)=16+1f(2) = -16 + 1
    f(2)=15f(2) = -15
  3. Find f(3)f(3): Next, we find f(3)f(3) using the formula with n=3n=3:
    f(3)=2f(31)+1f(3) = -2f(3-1) + 1
    f(3)=2f(2)+1f(3) = -2f(2) + 1
    f(3)=2(15)+1f(3) = -2(-15) + 1
    f(3)=30+1f(3) = 30 + 1
    f(3)=31f(3) = 31
  4. Find f(4)f(4): Now, we find f(4)f(4) using the formula with n=4n=4:
    f(4)=2f(41)+1f(4) = -2f(4-1) + 1
    f(4)=2f(3)+1f(4) = -2f(3) + 1
    f(4)=2(31)+1f(4) = -2(31) + 1
    f(4)=62+1f(4) = -62 + 1
    f(4)=61f(4) = -61
  5. Find f(5)f(5): Finally, we find f(5)f(5) using the formula with n=5n=5:
    f(5)=2f(51)+1f(5) = -2f(5-1) + 1
    f(5)=2f(4)+1f(5) = -2f(4) + 1
    f(5)=2(61)+1f(5) = -2(-61) + 1
    f(5)=122+1f(5) = 122 + 1
    f(5)=123f(5) = 123

More problems from Evaluate functions