Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=8 and 
f(n+1)=5f(n)-1 then find the value of 
f(5).
Answer:

If f(1)=8 f(1)=8 and f(n+1)=5f(n)1 f(n+1)=5 f(n)-1 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=8 f(1)=8 and f(n+1)=5f(n)1 f(n+1)=5 f(n)-1 then find the value of f(5) f(5) .\newlineAnswer:
  1. Find f(2)f(2): We are given that f(1)=8f(1) = 8. We need to find f(5)f(5) using the recursive formula f(n+1)=5f(n)1f(n+1) = 5f(n) - 1. Let's start by finding f(2)f(2).\newlinef(2)=5f(1)1f(2) = 5f(1) - 1\newlinef(2)=5(8)1f(2) = 5(8) - 1\newlinef(2)=401f(2) = 40 - 1\newlinef(2)=39f(2) = 39
  2. Find f(3)f(3): Now that we have f(2)f(2), we can find f(3)f(3) using the same recursive formula.\newlinef(3)=5f(2)1f(3) = 5f(2) - 1\newlinef(3)=5(39)1f(3) = 5(39) - 1\newlinef(3)=1951f(3) = 195 - 1\newlinef(3)=194f(3) = 194
  3. Calculate f(4)f(4): Next, we calculate f(4)f(4) using the value of f(3)f(3).
    f(4)=5f(3)1f(4) = 5f(3) - 1
    f(4)=5(194)1f(4) = 5(194) - 1
    f(4)=9701f(4) = 970 - 1
    f(4)=969f(4) = 969
  4. Find f(5)f(5): Finally, we find f(5)f(5) using the value of f(4)f(4).
    f(5)=5f(4)1f(5) = 5f(4) - 1
    f(5)=5(969)1f(5) = 5(969) - 1
    f(5)=48451f(5) = 4845 - 1
    f(5)=4844f(5) = 4844

More problems from Evaluate functions