Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=8 and 
f(n+1)=4f(n)-2 then find the value of 
f(4).
Answer:

If f(1)=8 f(1)=8 and f(n+1)=4f(n)2 f(n+1)=4 f(n)-2 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=8 f(1)=8 and f(n+1)=4f(n)2 f(n+1)=4 f(n)-2 then find the value of f(4) f(4) .\newlineAnswer:
  1. Find f(2)f(2): We are given that f(1)=8f(1) = 8. We need to find f(4)f(4) using the recursive formula f(n+1)=4f(n)2f(n+1) = 4f(n) - 2. Let's start by finding f(2)f(2).\newlinef(2)=4f(1)2f(2) = 4f(1) - 2\newlinef(2)=4(8)2f(2) = 4(8) - 2\newlinef(2)=322f(2) = 32 - 2\newlinef(2)=30f(2) = 30
  2. Find f(3)f(3): Now that we have f(2)f(2), we can find f(3)f(3) using the same recursive formula.\newlinef(3)=4f(2)2f(3) = 4f(2) - 2\newlinef(3)=4(30)2f(3) = 4(30) - 2\newlinef(3)=1202f(3) = 120 - 2\newlinef(3)=118f(3) = 118
  3. Find f(4)f(4): Finally, we can find f(4)f(4) using the value of f(3)f(3) we just calculated.\newlinef(4)=4f(3)2f(4) = 4f(3) - 2\newlinef(4)=4(118)2f(4) = 4(118) - 2\newlinef(4)=4722f(4) = 472 - 2\newlinef(4)=470f(4) = 470

More problems from Evaluate functions