Q. If f(1)=7 and f(n+1)=−4f(n)−3 then find the value of f(5)Answer:
Given f(1): We are given that f(1)=7. We need to find f(5) using the recursive formula f(n+1)=−4f(n)−3. Let's start by finding f(2).f(2)=−4f(1)−3f(2)=−4(7)−3f(2)=−28−3f(2)=−31
Find f(2): Now that we have f(2), we can find f(3) using the same recursive formula.f(3)=−4f(2)−3f(3)=−4(−31)−3f(3)=124−3f(3)=121
Calculate f(3): Next, we calculate f(4) using f(3). f(4)=−4f(3)−3 f(4)=−4(121)−3 f(4)=−484−3 f(4)=−487
Find f(4): Finally, we find f(5) using f(4).f(5)=−4f(4)−3f(5)=−4(−487)−3f(5)=1948−3f(5)=1945