Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=3 and 
f(n+1)=-5f(n)+1 then find the value of 
f(4)
Answer:

If f(1)=3 f(1)=3 and f(n+1)=5f(n)+1 f(n+1)=-5 f(n)+1 then find the value of f(4) f(4) \newlineAnswer:

Full solution

Q. If f(1)=3 f(1)=3 and f(n+1)=5f(n)+1 f(n+1)=-5 f(n)+1 then find the value of f(4) f(4) \newlineAnswer:
  1. Find f(2)f(2): We are given that f(1)=3f(1) = 3. We need to find f(4)f(4) using the recursive formula f(n+1)=5f(n)+1f(n+1) = -5f(n) + 1. Let's start by finding f(2)f(2).\newlineUsing the recursive formula, we substitute nn with 11 to find f(2)f(2):\newlinef(2)=5f(1)+1f(2) = -5f(1) + 1\newlinef(2)=5(3)+1f(2) = -5(3) + 1\newlinef(1)=3f(1) = 300\newlinef(1)=3f(1) = 311
  2. Find f(3)f(3): Now that we have f(2)f(2), we can find f(3)f(3) using the same recursive formula. Substitute nn with 22 to find f(3)f(3):f(3)=5f(2)+1f(3) = -5f(2) + 1f(3)=5(14)+1f(3) = -5(-14) + 1f(3)=70+1f(3) = 70 + 1f(3)=71f(3) = 71
  3. Find f(4)f(4): Finally, we use f(3)f(3) to find f(4)f(4). Again, we use the recursive formula and substitute nn with 33 to find f(4)f(4):\newlinef(4)=5f(3)+1f(4) = -5f(3) + 1\newlinef(4)=5(71)+1f(4) = -5(71) + 1\newlinef(4)=355+1f(4) = -355 + 1\newlinef(4)=354f(4) = -354

More problems from Evaluate functions