Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n)=4f(n-1)+1 then find the value of 
f(5).
Answer:

If f(1)=2 f(1)=2 and f(n)=4f(n1)+1 f(n)=4 f(n-1)+1 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n)=4f(n1)+1 f(n)=4 f(n-1)+1 then find the value of f(5) f(5) .\newlineAnswer:
  1. Given initial condition: We are given the initial condition f(1)=2f(1) = 2 and the recursive formula f(n)=4f(n1)+1f(n) = 4f(n-1) + 1. To find f(5)f(5), we need to find the values of f(2)f(2), f(3)f(3), and f(4)f(4) first, using the recursive formula.
  2. Find f(2)f(2): Using the recursive formula, let's find f(2)f(2):
    f(2)=4f(21)+1f(2) = 4f(2-1) + 1
    f(2)=4f(1)+1f(2) = 4f(1) + 1
    f(2)=4(2)+1f(2) = 4(2) + 1
    f(2)=8+1f(2) = 8 + 1
    f(2)=9f(2) = 9
  3. Find f(3)f(3): Now, let's find f(3)f(3):
    f(3)=4f(31)+1f(3) = 4f(3-1) + 1
    f(3)=4f(2)+1f(3) = 4f(2) + 1
    f(3)=4(9)+1f(3) = 4(9) + 1
    f(3)=36+1f(3) = 36 + 1
    f(3)=37f(3) = 37
  4. Find f(4)f(4): Next, we find f(4)f(4):
    f(4)=4f(41)+1f(4) = 4f(4-1) + 1
    f(4)=4f(3)+1f(4) = 4f(3) + 1
    f(4)=4(37)+1f(4) = 4(37) + 1
    f(4)=148+1f(4) = 148 + 1
    f(4)=149f(4) = 149
  5. Find f(5)f(5): Finally, we can find f(5)f(5):
    f(5)=4f(51)+1f(5) = 4f(5-1) + 1
    f(5)=4f(4)+1f(5) = 4f(4) + 1
    f(5)=4(149)+1f(5) = 4(149) + 1
    f(5)=596+1f(5) = 596 + 1
    f(5)=597f(5) = 597

More problems from Evaluate functions