Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=10 and 
f(n)=4f(n-1)+n then find the value of 
f(4).
Answer:

If f(1)=10 f(1)=10 and f(n)=4f(n1)+n f(n)=4 f(n-1)+n then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=10 f(1)=10 and f(n)=4f(n1)+n f(n)=4 f(n-1)+n then find the value of f(4) f(4) .\newlineAnswer:
  1. Given f(1)=10f(1) = 10: We are given that f(1)=10f(1) = 10. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula f(n)=4f(n1)+nf(n) = 4f(n-1) + n. First, let's find f(2)f(2) using the given formula: f(2)=4f(21)+2f(2) = 4f(2-1) + 2 f(2)=4f(1)+2f(2) = 4f(1) + 2 f(1)=10f(1) = 1000 f(1)=10f(1) = 1011 f(1)=10f(1) = 1022
  2. Find f(2)f(2): Now that we have f(2)f(2), we can find f(3)f(3):
    f(3)=4f(31)+3f(3) = 4f(3-1) + 3
    f(3)=4f(2)+3f(3) = 4f(2) + 3
    f(3)=4(42)+3f(3) = 4(42) + 3
    f(3)=168+3f(3) = 168 + 3
    f(3)=171f(3) = 171
  3. Find f(3)f(3): Finally, we can find f(4)f(4) using the value of f(3)f(3):
    f(4)=4f(41)+4f(4) = 4f(4-1) + 4
    f(4)=4f(3)+4f(4) = 4f(3) + 4
    f(4)=4(171)+4f(4) = 4(171) + 4
    f(4)=684+4f(4) = 684 + 4
    f(4)=688f(4) = 688

More problems from Evaluate functions