Q. If f(1)=10 and f(n)=4f(n−1)+n then find the value of f(4).Answer:
Given f(1)=10: We are given that f(1)=10. To find f(4), we need to find the values of f(2), f(3), and then f(4) using the recursive formula f(n)=4f(n−1)+n. First, let's find f(2) using the given formula: f(2)=4f(2−1)+2f(2)=4f(1)+2f(1)=100f(1)=101f(1)=102
Find f(2): Now that we have f(2), we can find f(3): f(3)=4f(3−1)+3 f(3)=4f(2)+3 f(3)=4(42)+3 f(3)=168+3 f(3)=171
Find f(3): Finally, we can find f(4) using the value of f(3): f(4)=4f(4−1)+4 f(4)=4f(3)+4 f(4)=4(171)+4 f(4)=684+4 f(4)=688