Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=-3f(n-1)+3 then find the value of 
f(5).
Answer:

If f(1)=1 f(1)=1 and f(n)=3f(n1)+3 f(n)=-3 f(n-1)+3 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=3f(n1)+3 f(n)=-3 f(n-1)+3 then find the value of f(5) f(5) .\newlineAnswer:
  1. Given f(1)=1f(1) = 1: We are given that f(1)=1f(1) = 1. To find f(5)f(5), we need to apply the recursive formula f(n)=3f(n1)+3f(n) = -3f(n-1) + 3 for each subsequent value of nn until we reach n=5n = 5.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the formula with n=2n = 2.
    f(2)=3f(21)+3f(2) = -3f(2-1) + 3
    f(2)=3f(1)+3f(2) = -3f(1) + 3
    Since we know f(1)=1f(1) = 1, we can substitute it in:
    f(2)=3(1)+3f(2) = -3(1) + 3
    f(2)=3+3f(2) = -3 + 3
    f(2)=0f(2) = 0
  3. Find f(3)f(3): Next, we find f(3)f(3) using the formula with n=3n = 3.
    f(3)=3f(31)+3f(3) = -3f(3-1) + 3
    f(3)=3f(2)+3f(3) = -3f(2) + 3
    We have already found f(2)=0f(2) = 0, so we substitute it in:
    f(3)=3(0)+3f(3) = -3(0) + 3
    f(3)=0+3f(3) = 0 + 3
    f(3)=3f(3) = 3
  4. Find f(4)f(4): Now, we find f(4)f(4) using the formula with n=4n = 4.
    f(4)=3f(41)+3f(4) = -3f(4-1) + 3
    f(4)=3f(3)+3f(4) = -3f(3) + 3
    We have already found f(3)=3f(3) = 3, so we substitute it in:
    f(4)=3(3)+3f(4) = -3(3) + 3
    f(4)=9+3f(4) = -9 + 3
    f(4)=6f(4) = -6
  5. Find f(5)f(5): Finally, we find f(5)f(5) using the formula with n=5n = 5.
    f(5)=3f(51)+3f(5) = -3f(5-1) + 3
    f(5)=3f(4)+3f(5) = -3f(4) + 3
    We have already found f(4)=6f(4) = -6, so we substitute it in:
    f(5)=3(6)+3f(5) = -3(-6) + 3
    f(5)=18+3f(5) = 18 + 3
    f(5)=21f(5) = 21

More problems from Evaluate functions