Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a=(3+sqrt5)/(2), then find the value of 
a^(2)+(1)/(a^(2))

If a=3+52 a=\frac{3+\sqrt{5}}{2} , then find the value of a2+1a2 a^{2}+\frac{1}{a^{2}}

Full solution

Q. If a=3+52 a=\frac{3+\sqrt{5}}{2} , then find the value of a2+1a2 a^{2}+\frac{1}{a^{2}}
  1. Square a value: Square the value of aa. We have a=3+52a = \frac{3 + \sqrt{5}}{2}. To find a2a^2, we need to square this expression. a2=(3+52)2a^2 = \left(\frac{3 + \sqrt{5}}{2}\right)^2 a2=(3+5)222a^2 = \frac{(3 + \sqrt{5})^2}{2^2} a2=9+65+54a^2 = \frac{9 + 6\sqrt{5} + 5}{4} a2=14+654a^2 = \frac{14 + 6\sqrt{5}}{4} a2=72+352a^2 = \frac{7}{2} + \frac{3\sqrt{5}}{2}
  2. Find reciprocal and square: Find the reciprocal of aa and then square it.\newlineTo find 1a2\frac{1}{a^2}, we first find the reciprocal of aa, which is 23+5\frac{2}{3 + \sqrt{5}}, and then square it.\newline1a2=[23+5]2\frac{1}{a^2} = \left[\frac{2}{3 + \sqrt{5}}\right]^2\newline1a2=4(3+5)2\frac{1}{a^2} = \frac{4}{(3 + \sqrt{5})^2}\newline1a2=49+65+5\frac{1}{a^2} = \frac{4}{9 + 6\sqrt{5} + 5}\newline1a2=414+65\frac{1}{a^2} = \frac{4}{14 + 6\sqrt{5}}\newline1a2=47+35\frac{1}{a^2} = \frac{4}{7 + 3\sqrt{5}}\newlineNow, to rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is (735)(7 - 3\sqrt{5}).\newline1a2\frac{1}{a^2}00\newline1a2\frac{1}{a^2}11\newline1a2\frac{1}{a^2}22\newline1a2\frac{1}{a^2}33\newline1a2\frac{1}{a^2}44\newline1a2\frac{1}{a^2}55\newline1a2\frac{1}{a^2}66
  3. Add squared values: Add a2a^2 and 1a2\frac{1}{a^2}.
    Now we add the expressions we found for a2a^2 and 1a2\frac{1}{a^2}.
    a2+1a2=(72+352)+(735)a^2 + \frac{1}{a^2} = \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right) + \left(7 - 3\sqrt{5}\right)
    To add these, we need a common denominator. Since the second term has an implicit denominator of 11, we can multiply it by 22\frac{2}{2} to get the same denominator as the first term.
    a2+1a2=(72+352)+(142652)a^2 + \frac{1}{a^2} = \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right) + \left(\frac{14}{2} - \frac{6\sqrt{5}}{2}\right)
    a2+1a2=7+142+35652a^2 + \frac{1}{a^2} = \frac{7 + 14}{2} + \frac{3\sqrt{5} - 6\sqrt{5}}{2}
    a2+1a2=212352a^2 + \frac{1}{a^2} = \frac{21}{2} - \frac{3\sqrt{5}}{2}

More problems from Sin, cos, and tan of special angles