Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=7 and 
a_(n+1)=4a_(n)-4 then find the value of 
a_(5).
Answer:

If a1=7 a_{1}=7 and an+1=4an4 a_{n+1}=4 a_{n}-4 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=7 a_{1}=7 and an+1=4an4 a_{n+1}=4 a_{n}-4 then find the value of a5 a_{5} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first term of the sequence, a1=7a_{1} = 7, and the recursive formula an+1=4an4a_{n+1} = 4a_{n} - 4. To find a5a_{5}, we need to find the values of a2a_{2}, a3a_{3}, and a4a_{4} first, using the recursive formula.
  2. Find a2a_{2}: Let's find a2a_{2} using the recursive formula:\newlinea2=4a14a_{2} = 4a_{1} - 4\newlinea2=4(7)4a_{2} = 4(7) - 4\newlinea2=284a_{2} = 28 - 4\newlinea2=24a_{2} = 24
  3. Find a3a_{3}: Now, let's find a3a_{3} using the recursive formula:\newlinea3=4a24a_{3} = 4a_{2} - 4\newlinea3=4(24)4a_{3} = 4(24) - 4\newlinea3=964a_{3} = 96 - 4\newlinea3=92a_{3} = 92
  4. Find a4a_{4}: Next, we find a4a_{4} using the recursive formula:\newlinea4=4a34a_{4} = 4a_{3} - 4\newlinea4=4(92)4a_{4} = 4(92) - 4\newlinea4=3684a_{4} = 368 - 4\newlinea4=364a_{4} = 364
  5. Find a5a_{5}: Finally, we find a5a_{5} using the recursive formula:\newlinea5=4a44a_{5} = 4a_{4} - 4\newlinea5=4(364)4a_{5} = 4(364) - 4\newlinea5=14564a_{5} = 1456 - 4\newlinea5=1452a_{5} = 1452

More problems from Evaluate functions