Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n)=(a_(n-1))^(2)-n then find the value of 
a_(4).
Answer:

If a1=4 a_{1}=4 and an=(an1)2n a_{n}=\left(a_{n-1}\right)^{2}-n then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an=(an1)2n a_{n}=\left(a_{n-1}\right)^{2}-n then find the value of a4 a_{4} .\newlineAnswer:
  1. Given value and formula: We are given that a1=4a_{1} = 4. We need to find a4a_{4} using the recursive formula an=(an1)2na_{n} = (a_{n-1})^2 - n.
  2. Find a2a_{2}: First, let's find a2a_{2} using the formula.\newlinea2=(a1)22a_{2} = (a_{1})^2 - 2\newlineSubstitute a1=4a_{1} = 4 into the formula.\newlinea2=(4)22a_{2} = (4)^2 - 2\newlinea2=162a_{2} = 16 - 2\newlinea2=14a_{2} = 14
  3. Find a3a_{3}: Next, we find a3a_{3} using the formula and the value of a2a_{2}.
    a3=(a2)23a_{3} = (a_{2})^2 - 3
    Substitute a2=14a_{2} = 14 into the formula.
    a3=(14)23a_{3} = (14)^2 - 3
    a3=1963a_{3} = 196 - 3
    a3=193a_{3} = 193
  4. Find a4a_{4}: Finally, we find a4a_{4} using the formula and the value of a3a_{3}.
    a4=(a3)24a_{4} = (a_{3})^2 - 4
    Substitute a3=193a_{3} = 193 into the formula.
    a4=(193)24a_{4} = (193)^2 - 4
    a4=372494a_{4} = 37249 - 4
    a4=37245a_{4} = 37245

More problems from Evaluate rational expressions II