Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n)=(a_(n-1))^(2)-2 then find the value of 
a_(4).
Answer:

If a1=4 a_{1}=4 and an=(an1)22 a_{n}=\left(a_{n-1}\right)^{2}-2 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an=(an1)22 a_{n}=\left(a_{n-1}\right)^{2}-2 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms and formula: We are given the first term of the sequence, a1=4a_{1} = 4, and the recursive formula for the sequence, an=(an1)22a_{n} = (a_{n-1})^2 - 2. We need to find the value of the fourth term, a4a_{4}.
  2. Find second term: First, let's find the second term, a2a_{2}, using the recursive formula with n=2n=2.\newlinea2=(a1)22a_{2} = (a_{1})^2 - 2\newlineSubstitute a1=4a_{1} = 4 into the formula.\newlinea2=(4)22a_{2} = (4)^2 - 2
  3. Calculate a2a_{2}: Calculate the value of a2a_{2}.\newlinea2=162a_{2} = 16 - 2\newlinea2=14a_{2} = 14\newlineNow we have the value of the second term.
  4. Find third term: Next, let's find the third term, a3a_{3}, using the recursive formula with n=3n=3.\newlinea3=(a2)22a_{3} = (a_{2})^2 - 2\newlineSubstitute a2=14a_{2} = 14 into the formula.\newlinea3=(14)22a_{3} = (14)^2 - 2
  5. Calculate a3a_{3}: Calculate the value of a3a_{3}.\newlinea3=1962a_{3} = 196 - 2\newlinea3=194a_{3} = 194\newlineNow we have the value of the third term.
  6. Find fourth term: Finally, let's find the fourth term, a4a_{4}, using the recursive formula with n=4n=4.\newlinea4=(a3)22a_{4} = (a_{3})^2 - 2\newlineSubstitute a3=194a_{3} = 194 into the formula.\newlinea4=(194)22a_{4} = (194)^2 - 2
  7. Calculate a4a_{4}: Calculate the value of a4a_{4}.\newlinea4=376362a_{4} = 37636 - 2\newlinea4=37634a_{4} = 37634\newlineNow we have the value of the fourth term.

More problems from Evaluate rational expressions II