Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=4 and 
a_(n)=(a_(n-1))^(2)-1 then find the value of 
a_(3).
Answer:

If a1=4 a_{1}=4 and an=(an1)21 a_{n}=\left(a_{n-1}\right)^{2}-1 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=4 a_{1}=4 and an=(an1)21 a_{n}=\left(a_{n-1}\right)^{2}-1 then find the value of a3 a_{3} .\newlineAnswer:
  1. Calculate a2a_{2}: We are given that a1=4a_{1} = 4. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula an=(an1)21a_{n} = (a_{n-1})^2 - 1.\newlineCalculate a2a_{2} using a1a_{1}:\newlinea2=(a1)21a_{2} = (a_{1})^2 - 1\newlinea2=(4)21a_{2} = (4)^2 - 1\newlinea2=161a_{2} = 16 - 1\newlinea1=4a_{1} = 400
  2. Calculate a3a_{3}: Now that we have a2=15a_{2} = 15, we can find a3a_{3} using the same recursive formula.\newlineCalculate a3a_{3} using a2a_{2}:\newlinea3=(a2)21a_{3} = (a_{2})^2 - 1\newlinea3=(15)21a_{3} = (15)^2 - 1\newlinea3=2251a_{3} = 225 - 1\newlinea3=224a_{3} = 224

More problems from Evaluate rational expressions II