Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n)=(a_(n-1))^(2)-5 then find the value of 
a_(4).
Answer:

If a1=3 a_{1}=3 and an=(an1)25 a_{n}=\left(a_{n-1}\right)^{2}-5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an=(an1)25 a_{n}=\left(a_{n-1}\right)^{2}-5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Value: We are given that a1=3a_{1} = 3. To find a4a_{4}, we need to find a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula an=(an1)25a_{n} = (a_{n-1})^2 - 5.
  2. Find a2a_{2}: First, let's find a2a_{2} using the formula with n=2n=2.
    a2=(a1)25a_{2} = (a_{1})^2 - 5
    Substitute a1=3a_{1} = 3 into the formula.
    a2=(3)25a_{2} = (3)^2 - 5
    a2=95a_{2} = 9 - 5
    a2=4a_{2} = 4
  3. Find a3a_{3}: Next, we find a3a_{3} using the formula with n=3n=3.\newlinea3=(a2)25a_{3} = (a_{2})^2 - 5\newlineSubstitute a2=4a_{2} = 4 into the formula.\newlinea3=(4)25a_{3} = (4)^2 - 5\newlinea3=165a_{3} = 16 - 5\newlinea3=11a_{3} = 11
  4. Find a4a_{4}: Finally, we find a4a_{4} using the formula with n=4n=4.\newlinea4=(a3)25a_{4} = (a_{3})^2 - 5\newlineSubstitute a3=11a_{3} = 11 into the formula.\newlinea4=(11)25a_{4} = (11)^2 - 5\newlinea4=1215a_{4} = 121 - 5\newlinea4=116a_{4} = 116

More problems from Evaluate rational expressions II