Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
=
(
a
n
−
1
)
2
−
5
a_{n}=\left(a_{n-1}\right)^{2}-5
a
n
=
(
a
n
−
1
)
2
−
5
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
View step-by-step help
Home
Math Problems
Algebra 2
Evaluate rational expressions II
Full solution
Q.
If
a
1
=
3
a_{1}=3
a
1
=
3
and
a
n
=
(
a
n
−
1
)
2
−
5
a_{n}=\left(a_{n-1}\right)^{2}-5
a
n
=
(
a
n
−
1
)
2
−
5
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Given Value:
We are given that
a
1
=
3
a_{1} = 3
a
1
=
3
. To find
a
4
a_{4}
a
4
, we need to find
a
2
a_{2}
a
2
,
a
3
a_{3}
a
3
, and then
a
4
a_{4}
a
4
using the recursive formula
a
n
=
(
a
n
−
1
)
2
−
5
a_{n} = (a_{n-1})^2 - 5
a
n
=
(
a
n
−
1
)
2
−
5
.
Find
a
2
a_{2}
a
2
:
First, let's find
a
2
a_{2}
a
2
using the formula with
n
=
2
n=2
n
=
2
.
a
2
=
(
a
1
)
2
−
5
a_{2} = (a_{1})^2 - 5
a
2
=
(
a
1
)
2
−
5
Substitute
a
1
=
3
a_{1} = 3
a
1
=
3
into the formula.
a
2
=
(
3
)
2
−
5
a_{2} = (3)^2 - 5
a
2
=
(
3
)
2
−
5
a
2
=
9
−
5
a_{2} = 9 - 5
a
2
=
9
−
5
a
2
=
4
a_{2} = 4
a
2
=
4
Find
a
3
a_{3}
a
3
:
Next, we find
a
3
a_{3}
a
3
using the formula with
n
=
3
n=3
n
=
3
.
\newline
a
3
=
(
a
2
)
2
−
5
a_{3} = (a_{2})^2 - 5
a
3
=
(
a
2
)
2
−
5
\newline
Substitute
a
2
=
4
a_{2} = 4
a
2
=
4
into the formula.
\newline
a
3
=
(
4
)
2
−
5
a_{3} = (4)^2 - 5
a
3
=
(
4
)
2
−
5
\newline
a
3
=
16
−
5
a_{3} = 16 - 5
a
3
=
16
−
5
\newline
a
3
=
11
a_{3} = 11
a
3
=
11
Find
a
4
a_{4}
a
4
:
Finally, we find
a
4
a_{4}
a
4
using the formula with
n
=
4
n=4
n
=
4
.
\newline
a
4
=
(
a
3
)
2
−
5
a_{4} = (a_{3})^2 - 5
a
4
=
(
a
3
)
2
−
5
\newline
Substitute
a
3
=
11
a_{3} = 11
a
3
=
11
into the formula.
\newline
a
4
=
(
11
)
2
−
5
a_{4} = (11)^2 - 5
a
4
=
(
11
)
2
−
5
\newline
a
4
=
121
−
5
a_{4} = 121 - 5
a
4
=
121
−
5
\newline
a
4
=
116
a_{4} = 116
a
4
=
116
More problems from Evaluate rational expressions II
Question
Evaluate the expression for
t
=
−
4.4
t = -4.4
t
=
−
4.4
.
\newline
Write your answer in simplest form.
\newline
` frac{t - 4}{t - 2} =` ____
Get tutor help
Posted 1 year ago
Question
Simplify. Write your answer using whole numbers and variables.
\newline
g
3
g
2
−
4
g
\frac{g}{3g^2 - 4g}
3
g
2
−
4
g
g
Get tutor help
Posted 10 months ago
Question
Simplify. Express your answer as a single fraction in simplest form.
3
2
−
5
p
3
3
\frac{3}{2} - \frac{5p^3}{3}
2
3
−
3
5
p
3
______
Get tutor help
Posted 10 months ago
Question
Simplify. Express your answer as a single fraction in simplest form.
\newline
1
+
v
5
w
3
1 + \frac{v^5w}{3}
1
+
3
v
5
w
\newline
______
Get tutor help
Posted 10 months ago
Question
Solve for
h
h
h
.
\newline
−
5
h
−
2
=
−
4
h
−
3
\frac{-5}{h - 2} = \frac{-4}{h - 3}
h
−
2
−
5
=
h
−
3
−
4
\newline
There may be
1
1
1
or
2
2
2
solutions.
\newline
h
=
h =
h
=
_____ or
h
=
h =
h
=
_____
Get tutor help
Posted 1 year ago
Question
What is the equation of the vertical asymptote of
y
=
1
x
+
9
y = \frac{1}{x + 9}
y
=
x
+
9
1
? _____
Get tutor help
Posted 1 year ago
Question
What is the excluded value for
y
=
1
x
−
9
−
9
y = \frac{1}{x - 9} - 9
y
=
x
−
9
1
−
9
?
\newline
______
Get tutor help
Posted 1 year ago
Question
Simplify. Write your answer using whole numbers and variables.
\newline
9
k
+
4
9
k
2
+
4
k
\frac{9k + 4}{9k^2 + 4k}
9
k
2
+
4
k
9
k
+
4
\newline
______
Get tutor help
Posted 1 year ago
Question
Divide. Write your answer in simplest form.
\newline
g
−
1
10
g
3
+
25
g
2
÷
(
g
−
1
)
\frac{g- 1}{10g^3 + 25g^2} \div (g- 1)
10
g
3
+
25
g
2
g
−
1
÷
(
g
−
1
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Simplify. Express your answer as a single fraction in simplest form.
\newline
5
−
3
t
3
1
\frac{5 - \frac{3}{t^3}}{1}
1
5
−
t
3
3
\newline
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant