Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=3 and 
a_(n)=(a_(n-1))^(2)-1 then find the value of 
a_(3).
Answer:

If a1=3 a_{1}=3 and an=(an1)21 a_{n}=\left(a_{n-1}\right)^{2}-1 then find the value of a3 a_{3} .\newlineAnswer:

Full solution

Q. If a1=3 a_{1}=3 and an=(an1)21 a_{n}=\left(a_{n-1}\right)^{2}-1 then find the value of a3 a_{3} .\newlineAnswer:
  1. Calculate a2a_{2}: We are given that a1=3a_{1} = 3. To find a3a_{3}, we first need to find a2a_{2} using the recursive formula an=(an1)21a_{n} = (a_{n-1})^2 - 1.\newlineCalculate a2a_{2} using a1=3a_{1} = 3:\newlinea2=(a1)21a_{2} = (a_{1})^2 - 1\newlinea2=(3)21a_{2} = (3)^2 - 1\newlinea2=91a_{2} = 9 - 1\newlinea1=3a_{1} = 300
  2. Calculate a3a_{3}: Now that we have a2=8a_{2} = 8, we can find a3a_{3} using the same recursive formula.\newlineCalculate a3a_{3} using a2=8a_{2} = 8:\newlinea3=(a2)21a_{3} = (a_{2})^2 - 1\newlinea3=(8)21a_{3} = (8)^2 - 1\newlinea3=641a_{3} = 64 - 1\newlinea3=63a_{3} = 63

More problems from Evaluate rational expressions II