Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2 and 
a_(n)=(a_(n-1))^(2)-3 then find the value of 
a_(4).
Answer:

If a1=2 a_{1}=2 and an=(an1)23 a_{n}=\left(a_{n-1}\right)^{2}-3 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2 a_{1}=2 and an=(an1)23 a_{n}=\left(a_{n-1}\right)^{2}-3 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first term of the sequence, a1=2a_{1} = 2, and the recursive formula for the sequence, an=(an1)23a_{n} = (a_{n-1})^2 - 3. We need to find the value of the fourth term, a4a_{4}.
  2. Find Second Term: First, let's find the second term, a2a_{2}, using the recursive formula with n=2n=2.\newlinea2=(a1)23a_{2} = (a_{1})^2 - 3\newlineSubstitute a1=2a_{1} = 2 into the formula.\newlinea2=(2)23a_{2} = (2)^2 - 3
  3. Calculate a2a_{2}: Calculate the value of a2a_{2}.a2=43a_{2} = 4 - 3a2=1a_{2} = 1
  4. Find Third Term: Next, let's find the third term, a3a_{3}, using the recursive formula with n=3n=3.\newlinea3=(a2)23a_{3} = (a_{2})^2 - 3\newlineSubstitute a2=1a_{2} = 1 into the formula.\newlinea3=(1)23a_{3} = (1)^2 - 3
  5. Calculate a3a_{3}: Calculate the value of a3a_{3}.a3=13a_{3} = 1 - 3a3=2a_{3} = -2
  6. Find Fourth Term: Finally, let's find the fourth term, a4a_{4}, using the recursive formula with n=4n=4.\newlinea4=(a3)23a_{4} = (a_{3})^2 - 3\newlineSubstitute a3=2a_{3} = -2 into the formula.\newlinea4=(2)23a_{4} = (-2)^2 - 3
  7. Calculate a4a_{4}: Calculate the value of a4a_{4}.\newlinea4=43a_{4} = 4 - 3\newlinea4=1a_{4} = 1

More problems from Evaluate rational expressions II