Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=2 and 
a_(n+1)=(a_(n))^(2)+5 then find the value of 
a_(4).
Answer:

If a1=2 a_{1}=2 and an+1=(an)2+5 a_{n+1}=\left(a_{n}\right)^{2}+5 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=2 a_{1}=2 and an+1=(an)2+5 a_{n+1}=\left(a_{n}\right)^{2}+5 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given terms and formula: We are given the first term of the sequence, a1=2a_{1} = 2, and the recursive formula for the sequence, an+1=(an)2+5a_{n+1} = (a_{n})^2 + 5. We need to find the value of the fourth term, a4a_{4}.
  2. Calculate a2a_{2}: To find a2a_{2}, we use the recursive formula with n=1n = 1: a2=(a1)2+5a_{2} = (a_{1})^2 + 5.\newlineCalculation: a2=(2)2+5=4+5=9a_{2} = (2)^2 + 5 = 4 + 5 = 9.
  3. Calculate a3a_{3}: Next, we find a3a_{3} using the recursive formula with n=2n = 2: a3=(a2)2+5a_{3} = (a_{2})^2 + 5.\newlineCalculation: a3=(9)2+5=81+5=86a_{3} = (9)^2 + 5 = 81 + 5 = 86.
  4. Calculate a4a_{4}: Finally, we find a4a_{4} using the recursive formula with n=3n = 3: a4=(a3)2+5a_{4} = (a_{3})^2 + 5.\newlineCalculation: a4=(86)2+5=7396+5=7401a_{4} = (86)^2 + 5 = 7396 + 5 = 7401.

More problems from Evaluate rational expressions II