Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n)=(a_(n-1))^(2)-n then find the value of 
a_(4).
Answer:

If a1=1 a_{1}=1 and an=(an1)2n a_{n}=\left(a_{n-1}\right)^{2}-n then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an=(an1)2n a_{n}=\left(a_{n-1}\right)^{2}-n then find the value of a4 a_{4} .\newlineAnswer:
  1. Given value and formula: We are given that a1=1a_{1} = 1. To find a4a_{4}, we need to find the values of a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula an=(an1)2na_{n} = (a_{n-1})^2 - n.
  2. Find a2a_{2}: First, let's find a2a_{2} using the formula with n=2n = 2.
    a2=(a1)22a_{2} = (a_{1})^2 - 2
    a2=(1)22a_{2} = (1)^2 - 2
    a2=12a_{2} = 1 - 2
    a2=1a_{2} = -1
  3. Find a3a_{3}: Next, we find a3a_{3} using the formula with n=3n = 3 and the previously found value of a2a_{2}.
    a3=(a2)23a_{3} = (a_{2})^2 - 3
    a3=(1)23a_{3} = (-1)^2 - 3
    a3=13a_{3} = 1 - 3
    a3=2a_{3} = -2
  4. Find a4a_{4}: Finally, we find a4a_{4} using the formula with n=4n = 4 and the previously found value of a3a_{3}.
    a4=(a3)24a_{4} = (a_{3})^2 - 4
    a4=(2)24a_{4} = (-2)^2 - 4
    a4=44a_{4} = 4 - 4
    a4=0a_{4} = 0

More problems from Evaluate rational expressions II