Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=1 and 
a_(n+1)=(a_(n))^(2)-3 then find the value of 
a_(4).
Answer:

If a1=1 a_{1}=1 and an+1=(an)23 a_{n+1}=\left(a_{n}\right)^{2}-3 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=1 a_{1}=1 and an+1=(an)23 a_{n+1}=\left(a_{n}\right)^{2}-3 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first term of the sequence, a1=1a_{1} = 1, and the recursive formula an+1=(an)23a_{n+1} = (a_{n})^2 - 3. We need to find the value of a4a_{4}.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula with n=1n = 1.\newlinea2=(a1)23=(1)23=13=2a_{2} = (a_{1})^2 - 3 = (1)^2 - 3 = 1 - 3 = -2.
  3. Find a3a_{3}: Next, we find a3a_{3} using the recursive formula with n=2n = 2.\newlinea3=(a2)23=(2)23=43=1a_{3} = (a_{2})^2 - 3 = (-2)^2 - 3 = 4 - 3 = 1.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the recursive formula with n=3n = 3.\newlinea4=(a3)23=(1)23=13=2a_{4} = (a_{3})^2 - 3 = (1)^2 - 3 = 1 - 3 = -2.

More problems from Evaluate rational expressions II