Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
5y=-xy^(2)-x then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 5y=xy2x 5 y=-x y^{2}-x then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 5y=xy2x 5 y=-x y^{2}-x then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate with respect to xx: Differentiate both sides of the equation with respect to xx. We have the equation 5y=xy2x5y = -xy^2 - x. To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, using the product rule for the term xy2-xy^2 and remembering that yy is a function of xx. Differentiating the left side: ddx(5y)=5dydx\frac{d}{dx} (5y) = 5 \cdot \frac{dy}{dx} Differentiating the right side: ddx(xy2x)=ddx(xy2)+ddx(x)\frac{d}{dx} (-xy^2 - x) = \frac{d}{dx} (-xy^2) + \frac{d}{dx} (-x) For the first term, we use the product rule: xx00 Let xx11 and xx22, then xx33 and xx44 So, xx55 And xx66 Combining the derivatives, we get: xx77 Now we equate the derivatives of both sides: xx88
  2. Derivative calculation: Solve for (dy)/(dx)(dy)/(dx).\newlineWe now have an equation with (dy)/(dx)(dy)/(dx) on both sides:\newline5(dy)/(dx)=y22xy(dy)/(dx)15 \cdot (dy)/(dx) = - y^2 - 2xy \cdot (dy)/(dx) - 1\newlineTo solve for (dy)/(dx)(dy)/(dx), we need to get all the terms involving (dy)/(dx)(dy)/(dx) on one side of the equation:\newline5(dy)/(dx)+2xy(dy)/(dx)=y215 \cdot (dy)/(dx) + 2xy \cdot (dy)/(dx) = - y^2 - 1\newlineFactor out (dy)/(dx)(dy)/(dx):\newline(dy)/(dx)(5+2xy)=y21(dy)/(dx) \cdot (5 + 2xy) = - y^2 - 1\newlineNow, divide both sides by (5+2xy)(5 + 2xy) to isolate (dy)/(dx)(dy)/(dx):\newline(dy)/(dx)(dy)/(dx)00

More problems from Transformations of quadratic functions