Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-5xy^(2)-4y=4+x then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 5xy24y=4+x -5 x y^{2}-4 y=4+x then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 5xy24y=4+x -5 x y^{2}-4 y=4+x then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate Equation: Differentiate both sides of the equation with respect to xx. We will use the product rule for differentiating 5xy2-5xy^2 and the chain rule for differentiating 4y-4y, since yy is a function of xx. ddx(5xy2)+ddx(4y)=ddx(4+x)\frac{d}{dx}(-5xy^2) + \frac{d}{dx}(-4y) = \frac{d}{dx}(4+x)
  2. Apply Product Rule: Apply the product rule to the term 5xy2-5xy^2. The product rule states that ddx(uv)=u(dvdx)+v(dudx)\frac{d}{dx}(uv) = u\left(\frac{dv}{dx}\right) + v\left(\frac{du}{dx}\right), where u=5y2u = -5y^2 and v=xv = x. ddx(5xy2)=5y2ddx(x)+xddx(5y2)\frac{d}{dx}(-5xy^2) = -5y^2 \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(-5y^2)
  3. Differentiate Terms: Differentiate xx and 5y2-5y^2 with respect to xx.
    ddx(x)=1\frac{d}{dx}(x) = 1
    ddx(5y2)=5×2y×dydx\frac{d}{dx}(-5y^2) = -5 \times 2y \times \frac{dy}{dx} (using the chain rule, since yy is a function of xx)
  4. Substitute Derivatives: Substitute the derivatives back into the equation.\newlineddx(5xy2)=5y21+x(10ydydx)\frac{d}{dx}(-5xy^2) = -5y^2 \cdot 1 + x \cdot (-10y \cdot \frac{dy}{dx})\newlineddx(4y)=4dydx\frac{d}{dx}(-4y) = -4 \cdot \frac{dy}{dx} (using the chain rule)
  5. Differentiate Right Side: Differentiate the right side of the equation. ddx(4+x)=0+1\frac{d}{dx}(4+x) = 0 + 1
  6. Combine Differentiated Parts: Combine all the differentiated parts.\newline5y210xydydx4dydx=1-5y^2 - 10xy \frac{dy}{dx} - 4 \frac{dy}{dx} = 1
  7. Isolate Terms: Isolate terms with dydx\frac{dy}{dx} on one side and move the rest to the other side.\newline10xydydx4dydx=1+5y2-10xy \cdot \frac{dy}{dx} - 4 \cdot \frac{dy}{dx} = 1 + 5y^2
  8. Factor Out dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} from the left side of the equation.\newlinedydx×(10xy4)=1+5y2\frac{dy}{dx} \times (-10xy - 4) = 1 + 5y^2
  9. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx}.dydx=1+5y210xy4\frac{dy}{dx} = \frac{1 + 5y^2}{-10xy - 4}

More problems from Transformations of quadratic functions