Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-5x^(2)-y^(3)+4y^(2)=3 then find 
(dy)/(dx) at the point 
(1,2).
Answer: 
(dy)/(dx)|_((1,2))=

If 5x2y3+4y2=3 -5 x^{2}-y^{3}+4 y^{2}=3 then find dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,2)}=

Full solution

Q. If 5x2y3+4y2=3 -5 x^{2}-y^{3}+4 y^{2}=3 then find dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,2)}=
  1. Implicit Differentiation: To find the derivative of yy with respect to xx, dydx\frac{dy}{dx}, we need to implicitly differentiate the given equation with respect to xx.
  2. Differentiate Terms: Differentiate each term of the equation with respect to xx, remembering to use the chain rule for terms involving yy, since yy is a function of xx.
    ddx(5x2)=10x\frac{d}{dx}(-5x^2) = -10x
    ddx(y3)=3y2dydx\frac{d}{dx}(-y^3) = -3y^2 \cdot \frac{dy}{dx}
    ddx(4y2)=8ydydx\frac{d}{dx}(4y^2) = 8y \cdot \frac{dy}{dx}
    ddx(3)=0\frac{d}{dx}(3) = 0
  3. Combine Derivatives: Combine the derivatives to form the differentiated equation: \newline10x3y2dydx+8ydydx=0-10x - 3y^2 \cdot \frac{dy}{dx} + 8y \cdot \frac{dy}{dx} = 0
  4. Isolate dydx\frac{dy}{dx}: Now, solve for dydx\frac{dy}{dx} by isolating terms that contain dydx\frac{dy}{dx} on one side of the equation:\newline\(-3y^22 \cdot \frac{dy}{dx} + 88y \cdot \frac{dy}{dx} = 1010x
  5. Factor Out (dydx):</b>Factorout$(dydx)(\frac{dy}{dx}):</b> Factor out \$(\frac{dy}{dx}) from the terms on the left side of the equation:\newline(\frac{dy}{dx}) \cdot (\(-3y^22 + 88y) = 1010x
  6. Solve for (dydx):(\frac{dy}{dx}): Divide both sides of the equation by (3y2+8y)(-3y^2 + 8y) to solve for (dydx):(\frac{dy}{dx}):dydx=10x3y2+8y\frac{dy}{dx} = \frac{10x}{-3y^2 + 8y}
  7. Substitute Values: Substitute x=1x = 1 and y=2y = 2 into the equation to find the value of (dydx)(\frac{dy}{dx}) at the point (1,2)(1,2):(dydx)(1,2)=10(1)(3(2)2+8(2))(\frac{dy}{dx})|_{(1,2)} = \frac{10(1)}{(-3(2)^2 + 8(2))}
  8. Calculate dydx\frac{dy}{dx}: Calculate the value of dydx\frac{dy}{dx} at the point (1,2)(1,2):
    dydx(1,2)=103(4)+16\left.\frac{dy}{dx}\right|_{(1,2)} = \frac{10}{-3(4) + 16}
    dydx(1,2)=1012+16\left.\frac{dy}{dx}\right|_{(1,2)} = \frac{10}{-12 + 16}
    dydx(1,2)=104\left.\frac{dy}{dx}\right|_{(1,2)} = \frac{10}{4}
    dydx(1,2)=2.5\left.\frac{dy}{dx}\right|_{(1,2)} = 2.5

More problems from Transformations of quadratic functions