Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-5-x^(3)-y^(3)=-3x^(2) then find 
(dy)/(dx) at the point 
(2,-1).
Answer: 
(dy)/(dx)|_((2,-1))=

If 5x3y3=3x2 -5-x^{3}-y^{3}=-3 x^{2} then find dydx \frac{d y}{d x} at the point (2,1) (2,-1) .\newlineAnswer: dydx(2,1)= \left.\frac{d y}{d x}\right|_{(2,-1)}=

Full solution

Q. If 5x3y3=3x2 -5-x^{3}-y^{3}=-3 x^{2} then find dydx \frac{d y}{d x} at the point (2,1) (2,-1) .\newlineAnswer: dydx(2,1)= \left.\frac{d y}{d x}\right|_{(2,-1)}=
  1. Differentiate Equation: First, we need to find the derivative of both sides of the equation with respect to xx to find dydx\frac{dy}{dx}. The equation is 5x3y3=3x2-5 - x^3 - y^3 = -3x^2. Differentiate both sides with respect to xx, remembering to use the chain rule for the y3y^3 term since yy is a function of xx. ddx(5x3y3)=ddx(3x2)\frac{d}{dx}(-5 - x^3 - y^3) = \frac{d}{dx}(-3x^2) This gives us: 3x23y2dydx=6x-3x^2 - 3y^2\frac{dy}{dx} = -6x
  2. Solve for dydx\frac{dy}{dx}: Now, we need to solve for dydx\frac{dy}{dx}.
    3-3y^22\left(\frac{dy}{dx}\right) = 6-6x + 33x^22
    Divide both sides by 3-3y^22 to isolate dydx\frac{dy}{dx}.
    dydx\frac{dy}{dx} = \frac{6-6x + 33x^22}{3-3y^22}
  3. Substitute Point: Next, we substitute the point (2,1)(2, -1) into the equation to find the value of (dy/dx)(dy/dx) at that point.\newline(dy/dx)(2,1)=6(2)+3(2)23(1)2(dy/dx)|_{(2,-1)} = \frac{-6(2) + 3(2)^2}{-3(-1)^2}\newlineThis simplifies to:\newline(dy/dx)(2,1)=12+123(dy/dx)|_{(2,-1)} = \frac{-12 + 12}{-3}
  4. Calculate Value: Finally, we calculate the value.\newline(dydx)(2,1)=03(\frac{dy}{dx})|_{(2,-1)} = \frac{0}{-3}\newline(dydx)(2,1)=0(\frac{dy}{dx})|_{(2,-1)} = 0

More problems from Transformations of absolute value functions