Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
4x^(2)-12 x=40, what are the possible values for 
x ?
A) -2 and 5
B) -5 and 2
C) -5 and -8
D) -5 and -16

If 4x212x=40 4 x^{2}-12 x=40 , what are the possible values for x x ?\newlineA) 2-2 and 55\newlineB) 5-5 and 22\newlineC) 5-5 and 8-8\newlineD) 5-5 and 16-16

Full solution

Q. If 4x212x=40 4 x^{2}-12 x=40 , what are the possible values for x x ?\newlineA) 2-2 and 55\newlineB) 5-5 and 22\newlineC) 5-5 and 8-8\newlineD) 5-5 and 16-16
  1. Rewrite in Standard Form: Start by rewriting the given equation in standard quadratic form.\newlineThe given equation is 4x212x=404x^2 - 12x = 40. To rewrite it in standard form, we need to set the equation equal to zero.\newline4x212x40=04x^2 - 12x - 40 = 0
  2. Factor the Quadratic Equation: Factor the quadratic equation.\newlineTo factor the equation, we look for two numbers that multiply to give 160-160 (4×40)(4 \times -40) and add to give 12-12 (the coefficient of xx).\newlineThe two numbers that satisfy these conditions are 20-20 and +8+8.\newlineSo we can write the equation as:\newline4x220x+8x40=04x^2 - 20x + 8x - 40 = 0\newlineGrouping the terms, we get:\newline(4x220x)+(8x40)=0(4x^2 - 20x) + (8x - 40) = 0\newlineTaking out the common factors, we have:\newline4x(x5)+8(x5)=04x(x - 5) + 8(x - 5) = 0\newlineNow we can factor out (x5)(x - 5):\newline(4×40)(4 \times -40)00
  3. Solve for x: Solve for x.\newlineWe have the factored form (4x+8)(x5)=0(4x + 8)(x - 5) = 0.\newlineSetting each factor equal to zero gives us the possible values for x:\newline4x+8=04x + 8 = 0 or x5=0x - 5 = 0\newlineSolving each equation for x gives us:\newline4x=84x = -8 or x=5x = 5\newlinex=2x = -2 or x=5x = 5
  4. Verify Solutions: Verify the solutions.\newlineWe substitute x=2x = -2 and x=5x = 5 back into the original equation to check if they are valid solutions.\newlineFor x=2x = -2:\newline4(2)212(2)=404(-2)^2 - 12(-2) = 40\newline16+24=4016 + 24 = 40\newline40=4040 = 40 (True)\newlineFor x=5x = 5:\newline4(5)212(5)=404(5)^2 - 12(5) = 40\newline10060=40100 - 60 = 40\newline40=4040 = 40 (True)\newlineBoth solutions satisfy the original equation.

More problems from Solve complex trigonomentric equations