Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-4=x^(2)+y^(3)-3x then find 
(dy)/(dx) at the point 
(4,-2).
Answer: 
(dy)/(dx)|_((4,-2))=

If 4=x2+y33x -4=x^{2}+y^{3}-3 x then find dydx \frac{d y}{d x} at the point (4,2) (4,-2) .\newlineAnswer: dydx(4,2)= \left.\frac{d y}{d x}\right|_{(4,-2)}=

Full solution

Q. If 4=x2+y33x -4=x^{2}+y^{3}-3 x then find dydx \frac{d y}{d x} at the point (4,2) (4,-2) .\newlineAnswer: dydx(4,2)= \left.\frac{d y}{d x}\right|_{(4,-2)}=
  1. Implicit Differentiation: To find the derivative dydx\frac{dy}{dx}, we need to implicitly differentiate the given equation with respect to xx. Given equation: 4=x2+y33x-4 = x^2 + y^3 - 3x Differentiate both sides with respect to xx. ddx(4)=ddx(x2)+ddx(y3)ddx(3x)\frac{d}{dx}(-4) = \frac{d}{dx}(x^2) + \frac{d}{dx}(y^3) - \frac{d}{dx}(3x) Since the derivative of a constant is 00, ddx(4)=0\frac{d}{dx}(-4) = 0. The derivative of x2x^2 with respect to xx is 2x2x. For xx00, since xx11 is a function of xx, we use the chain rule: xx33. The derivative of xx44 with respect to xx is xx66. Putting it all together, we get: xx77.
  2. Solving for dy/dx: Now we need to solve for dydx\frac{dy}{dx}.0=2x+3y2(dydx)30 = 2x + 3y^2 \cdot \left(\frac{dy}{dx}\right) - 3Rearrange the equation to isolate dydx\frac{dy}{dx} on one side:3y2(dydx)=32x3y^2 \cdot \left(\frac{dy}{dx}\right) = 3 - 2xDivide both sides by 3y23y^2 to solve for dydx\frac{dy}{dx}:dydx=32x3y2\frac{dy}{dx} = \frac{3 - 2x}{3y^2}
  3. Substitution and Calculation: Next, we substitute the point (4,2)(4, -2) into the equation for dydx\frac{dy}{dx}.x=4x = 4 and y=2y = -2dydx=(32(4))(3(2)2)\frac{dy}{dx} = \frac{(3 - 2(4))}{(3(-2)^2)}Calculate the values:dydx=(38)(34)\frac{dy}{dx} = \frac{(3 - 8)}{(3 \cdot 4)}dydx=(5)(12)\frac{dy}{dx} = \frac{(-5)}{(12)}

More problems from Transformations of quadratic functions