Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-4+5x^(3)=y^(3)+4x^(2)y then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 4+5x3=y3+4x2y -4+5 x^{3}=y^{3}+4 x^{2} y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 4+5x3=y3+4x2y -4+5 x^{3}=y^{3}+4 x^{2} y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate with respect to xx: Differentiate both sides of the equation with respect to xx. We will use the power rule for differentiation and the product rule for the term 4x2y4x^2y. Differentiate the left side: ddx(4+5x3)=0+15x2\frac{d}{dx}(-4 + 5x^3) = 0 + 15x^2 Differentiate the right side using the chain rule for y3y^3 and the product rule for 4x2y4x^2y: ddx(y3+4x2y)=3y2dydx+4(2xy+x2dydx)\frac{d}{dx}(y^3 + 4x^2y) = 3y^2\frac{dy}{dx} + 4(2xy + x^2\frac{dy}{dx})
  2. Set derivatives equal: Set the derivatives from both sides equal to each other.\newline15x2=3y2dydx+4(2xy+x2dydx)15x^2 = 3y^2\frac{dy}{dx} + 4(2xy + x^2\frac{dy}{dx})
  3. Combine like terms: Distribute and combine like terms. 15x2=3y2dydx+8xy+4x2dydx15x^2 = 3y^2\frac{dy}{dx} + 8xy + 4x^2\frac{dy}{dx}
  4. Isolate terms: Isolate terms with dydx\frac{dy}{dx} on one side and the rest on the other side.15x28xy=3y2(dydx)+4x2(dydx)15x^2 - 8xy = 3y^2\left(\frac{dy}{dx}\right) + 4x^2\left(\frac{dy}{dx}\right)
  5. Factor out dy/dx: Factor out dydx\frac{dy}{dx} from the right side of the equation.\newline15x28xy=dydx(3y2+4x2)15x^2 - 8xy = \frac{dy}{dx}(3y^2 + 4x^2)
  6. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx} by dividing both sides by (3y2+4x2)(3y^2 + 4x^2).dydx=15x28xy3y2+4x2\frac{dy}{dx} = \frac{15x^2 - 8xy}{3y^2 + 4x^2}

More problems from Transformations of quadratic functions