Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
3y-y^(2)-x^(3)=-y^(3) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 3yy2x3=y3 3 y-y^{2}-x^{3}=-y^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 3yy2x3=y3 3 y-y^{2}-x^{3}=-y^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Given Equation Differentiation: We are given the equation 3yy2x3=y33y - y^2 - x^3 = -y^3. To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, treating yy as a function of xx (implicit differentiation).
  2. Left Side Differentiation: Differentiate the left side of the equation with respect to xx: ddx(3yy2x3)\frac{d}{dx}(3y - y^2 - x^3). This gives us ddx(3y)ddx(y2)ddx(x3)\frac{d}{dx}(3y) - \frac{d}{dx}(y^2) - \frac{d}{dx}(x^3).
  3. Differentiate Each Term: Differentiate each term: ddx(3y)=3dydx\frac{d}{dx}(3y) = 3\frac{dy}{dx}, ddx(y2)=2ydydx\frac{d}{dx}(y^2) = 2y\frac{dy}{dx} using the chain rule, and ddx(x3)=3x2\frac{d}{dx}(x^3) = 3x^2.
  4. Right Side Differentiation: Differentiate the right side of the equation with respect to xx: ddx(y3)\frac{d}{dx}(-y^3). This gives us 3y2dydx-3y^2\frac{dy}{dx} using the chain rule.
  5. Combine Differentiated Terms: Combine the differentiated terms to form an equation: 3(dydx)2y(dydx)3x2=3y2(dydx)3\left(\frac{dy}{dx}\right) - 2y\left(\frac{dy}{dx}\right) - 3x^2 = -3y^2\left(\frac{dy}{dx}\right).
  6. Rearrange to Solve: Rearrange the terms to solve for (dydx)(\frac{dy}{dx}): (32y3y2)(dydx)=3x2(3 - 2y - 3y^2)(\frac{dy}{dx}) = 3x^2.
  7. Factor Out (dydx):(\frac{dy}{dx}): Factor out (dydx)(\frac{dy}{dx}) from the left side of the equation: (dydx)(32y3y2)=3x2(\frac{dy}{dx})(3 - 2y - 3y^2) = 3x^2.
  8. Isolate dydx\frac{dy}{dx}: Divide both sides by (32y3y2)(3 - 2y - 3y^2) to isolate dydx\frac{dy}{dx}: dydx=3x232y3y2\frac{dy}{dx} = \frac{3x^2}{3 - 2y - 3y^2}.

More problems from Transformations of quadratic functions