Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-3xy^(2)+x^(3)=-y^(3) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 3xy2+x3=y3 -3 x y^{2}+x^{3}=-y^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 3xy2+x3=y3 -3 x y^{2}+x^{3}=-y^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Apply Product Rule: To find the derivative dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, treating yy as a function of xx (implicit differentiation).\newlineDifferentiate the left side: 3xy2+x3-3xy^2 + x^3.\newlineUsing the product rule for 3xy2-3xy^2: ddx(3xy2)=3y2ddx(x)+3xddx(y2)\frac{d}{dx}(-3xy^2) = -3y^2 \cdot \frac{d}{dx}(x) + -3x \cdot \frac{d}{dx}(y^2).\newlineDifferentiate x3x^3: ddx(x3)=3x2\frac{d}{dx}(x^3) = 3x^2.
  2. Apply Chain Rule: Now differentiate the right side: y3-y^3. Using the chain rule: ddx(y3)=3y2ddx(y)\frac{d}{dx}(-y^3) = -3y^2 \cdot \frac{d}{dx}(y).
  3. Combine Derivatives: Combine the derivatives from both sides to form an equation:\newline3y21+3x2y(dydx)+3x2=3y2(dydx)-3y^2 \cdot 1 + -3x \cdot 2y \cdot \left(\frac{dy}{dx}\right) + 3x^2 = -3y^2 \cdot \left(\frac{dy}{dx}\right).
  4. Simplify and Solve: Simplify the equation and solve for dydx\frac{dy}{dx}:3y26xydydx+3x2=3y2dydx-3y^2 - 6xy \cdot \frac{dy}{dx} + 3x^2 = -3y^2 \cdot \frac{dy}{dx}.
  5. Rearrange Terms: Move all terms involving dydx\frac{dy}{dx} to one side and the rest to the other side:\newline6xydydx3y2dydx=3x23y26xy \cdot \frac{dy}{dx} - 3y^2 \cdot \frac{dy}{dx} = 3x^2 - 3y^2.
  6. Factor Out: Factor out (dydx)(\frac{dy}{dx}) from the left side:\newline(dydx)(6xy3y2)=3x23y2(\frac{dy}{dx}) \cdot (6xy - 3y^2) = 3x^2 - 3y^2.
  7. Isolate (dydx):</b>Dividebothsidesby$(6xy3y2)(\frac{dy}{dx}):</b> Divide both sides by \$(6xy - 3y^2) to isolate (dydx):(\frac{dy}{dx}):\newline(dydx)=3x23y26xy3y2.(\frac{dy}{dx}) = \frac{3x^2 - 3y^2}{6xy - 3y^2}.
  8. Simplify Expression: Simplify the expression by factoring out common terms: (dydx)=3(x2y2)3y(2xy)(\frac{dy}{dx}) = \frac{3(x^2 - y^2)}{3y(2x - y)}.
  9. Cancel Common Factor: Cancel the common factor of 33:(dydx)=x2y2y(2xy)(\frac{dy}{dx}) = \frac{x^2 - y^2}{y(2x - y)}.

More problems from Transformations of quadratic functions