Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
3xy-1=x^(3)-2y then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 3xy1=x32y 3 x y-1=x^{3}-2 y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 3xy1=x32y 3 x y-1=x^{3}-2 y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Apply Product Rule: We need to differentiate both sides of the equation with respect to xx to find dydx\frac{dy}{dx}. Differentiate the left side using the product rule: d(uv)dx=udvdx+vdudx\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}, where u=3yu = 3y and v=xv = x. Differentiate the right side with respect to xx normally.
  2. Differentiate Left Side: Differentiate the left side: d(3xy)/dx=3(d(xy)/dx)d(1)/dxd(3xy)/dx = 3(d(xy)/dx) - d(1)/dx. Using the product rule: d(xy)/dx=x(dy/dx)+y(dx/dx)d(xy)/dx = x(dy/dx) + y(dx/dx). Since dx/dx=1dx/dx = 1, we have d(xy)/dx=x(dy/dx)+yd(xy)/dx = x(dy/dx) + y. So, d(3xy)/dx=3(x(dy/dx)+y)d(3xy)/dx = 3(x(dy/dx) + y).
  3. Differentiate Right Side: Differentiate the right side: d(x32y)dx=d(x3)dxd(2y)dx\frac{d(x^3 - 2y)}{dx} = \frac{d(x^3)}{dx} - \frac{d(2y)}{dx}. The derivative of x3x^3 with respect to xx is 3x23x^2. The derivative of 2y-2y with respect to xx is 2dydx-2\frac{dy}{dx}. So, d(x32y)dx=3x22dydx\frac{d(x^3 - 2y)}{dx} = 3x^2 - 2\frac{dy}{dx}.
  4. Equate Derivatives: Now we equate the derivatives from both sides:\newline3(xdydx+y)0=3x22dydx3(x\frac{dy}{dx} + y) - 0 = 3x^2 - 2\frac{dy}{dx}.\newlineSimplify the equation:\newline3xdydx+3y=3x22dydx3x\frac{dy}{dx} + 3y = 3x^2 - 2\frac{dy}{dx}.
  5. Group Terms: Group all the terms containing dydx\frac{dy}{dx} on one side and the rest on the other side:\newline3xdydx+2dydx=3x23y.3x\frac{dy}{dx} + 2\frac{dy}{dx} = 3x^2 - 3y.\newlineFactor out dydx\frac{dy}{dx}:\newlinedydx(3x+2)=3x23y.\frac{dy}{dx}(3x + 2) = 3x^2 - 3y.
  6. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx}:dydx=3x23y3x+2\frac{dy}{dx} = \frac{3x^2 - 3y}{3x + 2}.This is the derivative of yy with respect to xx in terms of xx and yy.

More problems from Transformations of quadratic functions