Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-2y^(3)-x^(3)=5xy then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 2y3x3=5xy -2 y^{3}-x^{3}=5 x y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 2y3x3=5xy -2 y^{3}-x^{3}=5 x y then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate Left Side: We are given the equation 2y3x3=5xy-2y^{3} - x^{3} = 5xy. To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, using implicit differentiation.
  2. Differentiate Right Side: Differentiate the left side of the equation with respect to xx: \newlineThe derivative of 2y3-2y^{3} with respect to xx is 6y2dydx-6y^{2}\frac{dy}{dx} because yy is a function of xx.\newlineThe derivative of x3-x^{3} with respect to xx is 3x2-3x^{2}.
  3. Combine Derivatives: Differentiate the right side of the equation with respect to xx: The derivative of 5xy5xy with respect to xx is 5y+5xdydx5y + 5x\frac{dy}{dx} by using the product rule.
  4. Solve for (\frac{dy}{dx}): Now we combine the derivatives from both sides to form the equation:\(\newline\(-6y^{22}(\frac{dy}{dx}) - 33x^{22} = 55y + 55x(\frac{dy}{dx}).
  5. Factor Out (dy)/(dx)(dy)/(dx): We need to solve for (dy)/(dx)(dy)/(dx). To do this, we'll move all terms involving (dy)/(dx)(dy)/(dx) to one side and the rest to the other side:\newline6y2(dy)/(dx)5x(dy)/(dx)=5y+3x2-6y^{2}(dy)/(dx) - 5x(dy)/(dx) = 5y + 3x^{2}.
  6. Divide to Solve (dydx):</b>Factorout$(dydx)(\frac{dy}{dx}):</b> Factor out \$(\frac{dy}{dx}) from the left side of the equation:\newline(dydx)(6y25x)=5y+3x2(\frac{dy}{dx})(-6y^{2} - 5x) = 5y + 3x^{2}.
  7. Divide to Solve (dy)/(dx)(dy)/(dx): Factor out (dy)/(dx)(dy)/(dx) from the left side of the equation:\newline(dy)/(dx)(6y25x)=5y+3x2(dy)/(dx)(-6y^{2} - 5x) = 5y + 3x^{2}.Now, divide both sides by (6y25x)(-6y^{2} - 5x) to solve for (dy)/(dx)(dy)/(dx):\newline(dy)/(dx)=(5y+3x2)/(6y25x)(dy)/(dx) = (5y + 3x^{2}) / (-6y^{2} - 5x).

More problems from Evaluate functions