Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-2x^(3)-y^(3)-4x^(2)-4-3x=0 then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If 2x3y34x243x=0 -2 x^{3}-y^{3}-4 x^{2}-4-3 x=0 then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If 2x3y34x243x=0 -2 x^{3}-y^{3}-4 x^{2}-4-3 x=0 then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate with respect to xx: We are given the equation 2x3y34x243x=0-2x^3 - y^3 - 4x^2 - 4 - 3x = 0. To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, treating yy as a function of xx (implicit differentiation).
  2. Combine derivatives: Differentiate each term with respect to xx. For terms involving only xx, we use the power rule. For the term involving yy, we use the chain rule, remembering to multiply by dydx\frac{dy}{dx} because yy is a function of xx.
    ddx(2x3)=6x2\frac{d}{dx}(-2x^3) = -6x^2
    ddx(y3)=3y2(dydx)\frac{d}{dx}(-y^3) = -3y^2 \cdot \left(\frac{dy}{dx}\right)
    ddx(4x2)=8x\frac{d}{dx}(-4x^2) = -8x
    ddx(4)=0\frac{d}{dx}(-4) = 0
    xx00
  3. Isolate term with dy/dx: Combine the derivatives to get the differentiated equation:\newline6x23y2(dydx)8x3=0-6x^2 - 3y^2 * \left(\frac{dy}{dx}\right) - 8x - 3 = 0
  4. Solve for dydx\frac{dy}{dx}: Now, we need to solve for dydx\frac{dy}{dx}. To do this, we isolate the term involving dydx\frac{dy}{dx} on one side of the equation:\newline\(-3y^22 \cdot \left(\frac{dy}{dx}\right) = 66x^22 + 88x + 33
  5. Divide by 3y2-3y^2: Divide both sides by 3y2-3y^2 to solve for dydx\frac{dy}{dx}:dydx=6x2+8x+33y2\frac{dy}{dx} = \frac{6x^2 + 8x + 3}{-3y^2}
  6. Simplify expression: Simplify the expression for dydx\frac{dy}{dx}:dydx=2x2y28x3y21y2\frac{dy}{dx} = -\frac{2x^2}{y^2} - \frac{8x}{3y^2} - \frac{1}{y^2}

More problems from Transformations of quadratic functions