Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Identify the part of the circle given the equation.
11. 
x^(2)+(y+3)^(2)=81
center: 
◻

◻
area : 
◻ (answer in terms of pi)

Identify the part of the circle given the equation.\newline1111. x2+(y+3)2=81 x^{2}+(y+3)^{2}=81 \newlinecenter: (( \square , \square )\newlinearea : \square (answer in terms of pi)

Full solution

Q. Identify the part of the circle given the equation.\newline1111. x2+(y+3)2=81 x^{2}+(y+3)^{2}=81 \newlinecenter: (( \square , \square )\newlinearea : \square (answer in terms of pi)
  1. Identify Equation Form: Identify the standard form of the circle equation and compare it to the given equation.\newlineStandard form: (xh)2+(yk)2=r2(x - h)^2 + (y - k)^2 = r^2\newlineGiven equation: x2+(y+3)2=81x^2 + (y + 3)^2 = 81\newlineHere, h=0h = 0, k=3k = -3, and r2=81r^2 = 81.
  2. Calculate Radius: Calculate the radius of the circle.\newlineSince r2=81r^2 = 81, r=81=9r = \sqrt{81} = 9.
  3. Calculate Area: Calculate the area of the circle using the radius.\newlineArea = π×r2=π×92=81π\pi \times r^2 = \pi \times 9^2 = 81\pi.

More problems from Find Coordinate on Unit Circle