Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How do you write 0.090.\overline{09} as a fraction?\newlineChoices:\newline(A) 19\frac{1}{9}\newline(B) 15\frac{1}{5}\newline(C) 111\frac{1}{11}\newline(D) 112\frac{1}{12}

Full solution

Q. How do you write 0.090.\overline{09} as a fraction?\newlineChoices:\newline(A) 19\frac{1}{9}\newline(B) 15\frac{1}{5}\newline(C) 111\frac{1}{11}\newline(D) 112\frac{1}{12}
  1. Recognize repeating decimal: Step 11: Recognize the repeating decimal. 0.090.\overline{09} means 0.0909090.090909\ldots
  2. Shift decimal point: Step 22: Let x=0.090909...x = 0.090909... Multiply xx by 100100 to shift the decimal point two places to the right. 100x=9.090909...100x = 9.090909...
  3. Subtract and simplify: Step 33: Subtract the original xx from 100x100x. 100xx=9.090909...0.090909...100x - x = 9.090909... - 0.090909... This gives 99x=999x = 9
  4. Solve for x: Step 44: Solve for x by dividing both sides by 9999. x=999x = \frac{9}{99}
  5. Final fraction: Step 55: Simplify the fraction 999\frac{9}{99}. Divide numerator and denominator by 99. x=111x = \frac{1}{11}

More problems from Convert between repeating decimals and fractions