Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(x)=(cot^(2)(x))/(1+sqrt2sin(x))
We want to find 
lim_(x rarr-(pi)/(4))h(x).
What happens when we use direct substitution?
Choose 1 answer:
(A) The limit exists, and we found it!
(B) The limit doesn't exist (probably an asymptote).
(c) The result is indeterminate.

h(x)=cot2(x)1+2sin(x) h(x)=\frac{\cot ^{2}(x)}{1+\sqrt{2} \sin (x)} \newlineWe want to find limxπ4h(x) \lim _{x \rightarrow-\frac{\pi}{4}} h(x) .\newlineWhat happens when we use direct substitution?\newlineChoose 11 answer:\newline(A) The limit exists, and we found it!\newline(B) The limit doesn't exist (probably an asymptote).\newline(C) The result is indeterminate.

Full solution

Q. h(x)=cot2(x)1+2sin(x) h(x)=\frac{\cot ^{2}(x)}{1+\sqrt{2} \sin (x)} \newlineWe want to find limxπ4h(x) \lim _{x \rightarrow-\frac{\pi}{4}} h(x) .\newlineWhat happens when we use direct substitution?\newlineChoose 11 answer:\newline(A) The limit exists, and we found it!\newline(B) The limit doesn't exist (probably an asymptote).\newline(C) The result is indeterminate.
  1. Substituting xx into h(x)h(x): Let's attempt to substitute xx with π4-\frac{\pi}{4} directly into the function h(x)h(x) to see what happens.\newlineh(x)=cot2(x)1+2sin(x)h(x) = \frac{\cot^{2}(x)}{1+\sqrt{2}\sin(x)}\newlineh(π4)=cot2(π4)1+2sin(π4)h\left(-\frac{\pi}{4}\right) = \frac{\cot^2\left(-\frac{\pi}{4}\right)}{1+\sqrt{2}\sin\left(-\frac{\pi}{4}\right)}
  2. Evaluating cot2(π4)\cot^2\left(-\frac{\pi}{4}\right): We need to evaluate cot2(π4)\cot^2\left(-\frac{\pi}{4}\right) and 2sin(π4)\sqrt{2}\sin\left(-\frac{\pi}{4}\right). The cotangent of π4-\frac{\pi}{4} is the reciprocal of the tangent of π4-\frac{\pi}{4}. Since tan(π4)=1\tan\left(-\frac{\pi}{4}\right) = -1, cot(π4)=1\cot\left(-\frac{\pi}{4}\right) = -1.
  3. Evaluating 2sin(π4)\sqrt{2}\sin\left(-\frac{\pi}{4}\right): Now we square cot(π4)\cot\left(-\frac{\pi}{4}\right) to get cot2(π4)=(1)2=1\cot^2\left(-\frac{\pi}{4}\right) = (-1)^2 = 1.
  4. Substituting values into h(x)h(x): Next, we evaluate 2sin(π4)\sqrt{2}\sin\left(-\frac{\pi}{4}\right). Since sin(π4)=sin(π4)\sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) and sin(π4)=22\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, we have 2sin(π4)=2×(22)=1\sqrt{2}\sin\left(-\frac{\pi}{4}\right) = \sqrt{2} \times \left(-\frac{\sqrt{2}}{2}\right) = -1.
  5. Division by zero and the limit: Substitute these values back into the function h(x)h(x):h(π4)=111h\left(-\frac{\pi}{4}\right) = \frac{1}{1 - 1}This simplifies to h(π4)=10h\left(-\frac{\pi}{4}\right) = \frac{1}{0}, which is undefined.
  6. Division by zero and the limit: Substitute these values back into the function h(x)h(x):h(π4)=111h\left(-\frac{\pi}{4}\right) = \frac{1}{1 - 1}This simplifies to h(π4)=10h\left(-\frac{\pi}{4}\right) = \frac{1}{0}, which is undefined.Since we have a division by zero, the limit does not exist due to a vertical asymptote at x=π4x = -\frac{\pi}{4}.

More problems from Domain and range of relations