Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(x)=(7-4x)/(3+sqrt(9x-2))
We want to find 
lim_(x rarr3)h(x).
What happens when we use direct substitution?
Choose 1 answer:
(A) The limit exists, and we found it!
(B) The limit doesn't exist (probably an asymptote).
(C) The result is indeterminate.

h(x)=74x3+9x2 h(x)=\frac{7-4 x}{3+\sqrt{9 x-2}} \newlineWe want to find limx3h(x) \lim _{x \rightarrow 3} h(x) .\newlineWhat happens when we use direct substitution?\newlineChoose 11 answer:\newline(A) The limit exists, and we found it!\newline(B) The limit doesn't exist (probably an asymptote).\newline(C) The result is indeterminate.

Full solution

Q. h(x)=74x3+9x2 h(x)=\frac{7-4 x}{3+\sqrt{9 x-2}} \newlineWe want to find limx3h(x) \lim _{x \rightarrow 3} h(x) .\newlineWhat happens when we use direct substitution?\newlineChoose 11 answer:\newline(A) The limit exists, and we found it!\newline(B) The limit doesn't exist (probably an asymptote).\newline(C) The result is indeterminate.
  1. Calculate h(3)h(3): Now, let's do the calculations.\newlineh(3)=(712)/(3+272)h(3) = (7 - 12) / (3 + \sqrt{27 - 2})\newlineh(3)=(5)/(3+25)h(3) = (-5) / (3 + \sqrt{25})\newlineh(3)=(5)/(3+5)h(3) = (-5) / (3 + 5)
  2. Simplify expression: Simplify the expression. h(3)=58h(3) = \frac{-5}{8}
  3. Final answer: Since we got a numerical value, the limit exists and we found it.\newlineSo, the answer is (A) The limit exists, and we found it!

More problems from Power rule