Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(x)={[2x+1," for "x < -2],[(1)/(x-1)," for "-2 <= x < 1]:}
Find 
lim_(x rarr-3)h(x).
Choose 1 answer:
(A) -5
(B) -3
(C) 
-(1)/(4)
(D) The limit doesn't exist.

h(x)={2x+1amp; for xlt;21x1amp; for 2xlt;1 h(x)=\left\{\begin{array}{ll} 2 x+1 &amp; \text { for } x&lt;-2 \\ \frac{1}{x-1} &amp; \text { for }-2 \leq x&lt;1 \end{array}\right. \newlineFind limx3h(x) \lim _{x \rightarrow-3} h(x) .\newlineChoose 11 answer:\newline(A) 5-5\newline(B) 3-3\newline(C) 14 -\frac{1}{4} \newline(D) The limit doesn't exist.

Full solution

Q. h(x)={2x+1 for x<21x1 for 2x<1 h(x)=\left\{\begin{array}{ll} 2 x+1 & \text { for } x<-2 \\ \frac{1}{x-1} & \text { for }-2 \leq x<1 \end{array}\right. \newlineFind limx3h(x) \lim _{x \rightarrow-3} h(x) .\newlineChoose 11 answer:\newline(A) 5-5\newline(B) 3-3\newline(C) 14 -\frac{1}{4} \newline(D) The limit doesn't exist.
  1. Given function and limit: We are given a piecewise function h(x)h(x) and need to find the limit as xx approaches 3-3. Since 3-3 is less than 2-2, we will use the first part of the piecewise function, which is 2x+12x + 1.
  2. Substituting xx into the function: Now we will substitute xx with 3-3 into the first part of the function to find the limit.limx3h(x)=2(3)+1\lim_{x \to -3} h(x) = 2(-3) + 1
  3. Performing the calculation: Perform the calculation: 2(3)+1=6+1=52(-3) + 1 = -6 + 1 = -5
  4. Final result and answer choice: The limit of h(x)h(x) as xx approaches 3-3 is 5-5, which corresponds to answer choice (A).

More problems from Power rule