Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(n)=-31-7(n-1)
Complete the recursive formula of 
h(n).

{:[h(1)=],[h(n)=h(n-1)+]:}

h(n)=317(n1) h(n)=-31-7(n-1) \newlineComplete the recursive formula of h(n) h(n) .\newlineh(1)=h(n)=h(n1)+ \begin{array}{l} h(1)=\square \\ h(n)=h(n-1)+ \end{array}

Full solution

Q. h(n)=317(n1) h(n)=-31-7(n-1) \newlineComplete the recursive formula of h(n) h(n) .\newlineh(1)=h(n)=h(n1)+ \begin{array}{l} h(1)=\square \\ h(n)=h(n-1)+ \end{array}
  1. Find h(1)h(1): First, let's find the value of h(1)h(1) by substituting n=1n = 1 into the given formula.\newlineh(1)=317(11)h(1) = -31 - 7(1 - 1)\newlineh(1)=317(0)h(1) = -31 - 7(0)\newlineh(1)=310h(1) = -31 - 0\newlineh(1)=31h(1) = -31
  2. Calculate h(2)h(2): Now, let's find h(2)h(2) to understand the pattern of the sequence.\newlineh(2)=317(21)h(2) = -31 - 7(2 - 1)\newlineh(2)=317(1)h(2) = -31 - 7(1)\newlineh(2)=317h(2) = -31 - 7\newlineh(2)=38h(2) = -38
  3. Confirm pattern with h(3)h(3): We can see that going from h(1)h(1) to h(2)h(2), we subtract 77. This suggests that the recursive formula involves subtracting 77 from the previous term. To confirm this pattern, let's calculate h(3)h(3).\newlineh(3)=317(31)h(3) = -31 - 7(3 - 1)\newlineh(3)=317(2)h(3) = -31 - 7(2)\newlineh(3)=3114h(3) = -31 - 14\newlineh(3)=45h(3) = -45
  4. Recursive formula for h(n)h(n): Comparing h(2)h(2) to h(3)h(3), we again subtract 77 from h(2)h(2) to get h(3)h(3). This confirms that the recursive formula for h(n)h(n) is h(n)=h(n1)7h(n) = h(n-1) - 7.

More problems from Write a formula for an arithmetic sequence