Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(n)=-10+12 n
Complete the recursive formula of 
h(n).

{:[h(1)=],[h(n)=h(n-1)+]:}

h(n)=10+12n h(n)=-10+12 n \newlineComplete the recursive formula of h(n) h(n) .\newlineh(1)=h(n)=h(n1)+ \begin{array}{l} h(1)=\square \\ h(n)=h(n-1)+ \end{array}

Full solution

Q. h(n)=10+12n h(n)=-10+12 n \newlineComplete the recursive formula of h(n) h(n) .\newlineh(1)=h(n)=h(n1)+ \begin{array}{l} h(1)=\square \\ h(n)=h(n-1)+ \end{array}
  1. Identify first term: Identify the first term of the sequence using the given explicit formula h(n)=10+12nh(n) = -10 + 12n. To find h(1)h(1), substitute n=1n = 1 into the formula.\newlineCalculation: h(1)=10+12(1)=10+12=2h(1) = -10 + 12(1) = -10 + 12 = 2.
  2. Determine common difference: Determine the common difference of the sequence by calculating the difference between the terms h(2)h(2) and h(1)h(1). First, find h(2)h(2) by substituting n=2n = 2 into the explicit formula.\newlineCalculation: h(2)=10+12(2)=10+24=14h(2) = -10 + 12(2) = -10 + 24 = 14.
  3. Calculate common difference: Now, calculate the common difference by subtracting h(1)h(1) from h(2)h(2).\newlineCalculation: Common difference (d)=h(2)h(1)=142=12(d) = h(2) - h(1) = 14 - 2 = 12.
  4. Write recursive formula: Write the recursive formula using the first term and the common difference. The recursive formula has the form h(n)=h(n1)+dh(n) = h(n-1) + d, where dd is the common difference.\newlineCalculation: Since h(1)=2h(1) = 2 and d=12d = 12, the recursive formula is h(n)=h(n1)+12h(n) = h(n-1) + 12.

More problems from Write a formula for an arithmetic sequence