Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0, the expression 
sqrt(x^(19)) is equivalent to

x^(8)sqrt(x^(2))

x^(8)sqrtx

x^(9)sqrtx

x^(9)sqrt(x^(2))

Given x>0 , the expression x19 \sqrt{x^{19}} is equivalent to\newlinex8x2 x^{8} \sqrt{x^{2}} \newlinex8x x^{8} \sqrt{x} \newlinex9x x^{9} \sqrt{x} \newlinex9x2 x^{9} \sqrt{x^{2}}

Full solution

Q. Given x>0 x>0 , the expression x19 \sqrt{x^{19}} is equivalent to\newlinex8x2 x^{8} \sqrt{x^{2}} \newlinex8x x^{8} \sqrt{x} \newlinex9x x^{9} \sqrt{x} \newlinex9x2 x^{9} \sqrt{x^{2}}
  1. Express in Exponential Form: We start by expressing the square root of xx to the power of 1919 in exponential form.x19=(x19)12\sqrt{x^{19}} = (x^{19})^{\frac{1}{2}}
  2. Apply Power to Power Rule: Next, we apply the power to power rule of exponents, which states that (am)n=a(mn)(a^m)^n = a^{(m \cdot n)}.\newline(x19)12=x192(x^{19})^{\frac{1}{2}} = x^{\frac{19}{2}}
  3. Simplify the Exponent: Now, we need to simplify the exponent. The fraction 192\frac{19}{2} can be rewritten as 9+129 + \frac{1}{2}, since 192=182+12=9+12\frac{19}{2} = \frac{18}{2} + \frac{1}{2} = 9 + \frac{1}{2}.\newlinex192=x9+12x^{\frac{19}{2}} = x^{9 + \frac{1}{2}}
  4. Split Exponent into Two Parts: We can now split the exponent into two parts using the property of exponents that states a(m+n)=amana^{(m + n)} = a^m \cdot a^n.\newlinex(9+12)=x9x12x^{(9 + \frac{1}{2})} = x^9 \cdot x^{\frac{1}{2}}
  5. Recognize Square Root: Finally, we recognize that x(1/2)x^{(1/2)} is the square root of xx.\newlinex9x(1/2)=x9xx^9 \cdot x^{(1/2)} = x^9 \cdot \sqrt{x}

More problems from Simplify radical expressions with root inside the root