Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0, the expression 
root(8)(x^(32)) is equivalent to

x^(5)root(8)(x^(6))

x^(5)

x^(4)root(8)(x^(6))

x^(4)

Given x>0 , the expression x328 \sqrt[8]{x^{32}} is equivalent to\newlinex5x68 x^{5} \sqrt[8]{x^{6}} \newlinex5 x^{5} \newlinex4x68 x^{4} \sqrt[8]{x^{6}} \newlinex4 x^{4}

Full solution

Q. Given x>0 x>0 , the expression x328 \sqrt[8]{x^{32}} is equivalent to\newlinex5x68 x^{5} \sqrt[8]{x^{6}} \newlinex5 x^{5} \newlinex4x68 x^{4} \sqrt[8]{x^{6}} \newlinex4 x^{4}
  1. Given Expression Simplification: We are given the expression x328\sqrt[8]{x^{32}} and we need to simplify it. The 88th root of xx to the power of 3232 can be written as x328x^{\frac{32}{8}} because in general, xmn=xmn\sqrt[n]{x^m} = x^{\frac{m}{n}}.
  2. Exponent Simplification: Now we simplify the exponent by dividing 3232 by 88. This gives us x(32/8)=x4x^{(32/8)} = x^4.
  3. Comparison for Equivalent Expression: We compare the simplified expression x4x^4 with the given options to find the equivalent expression. The correct equivalent expression is x4x^4.

More problems from Multiplication with rational exponents