Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0, the expression 
root(8)(x^(13)) is equivalent to

x^(2)root(8)(x^(4))

xroot(8)(x^(5))

xroot(8)(x^(4))

x^(2)root(8)(x^(5))

Given x>0 , the expression x138 \sqrt[8]{x^{13}} is equivalent to\newlinex2x48 x^{2} \sqrt[8]{x^{4}} \newlinexx58 x \sqrt[8]{x^{5}} \newlinexx48 x \sqrt[8]{x^{4}} \newlinex2x58 x^{2} \sqrt[8]{x^{5}}

Full solution

Q. Given x>0 x>0 , the expression x138 \sqrt[8]{x^{13}} is equivalent to\newlinex2x48 x^{2} \sqrt[8]{x^{4}} \newlinexx58 x \sqrt[8]{x^{5}} \newlinexx48 x \sqrt[8]{x^{4}} \newlinex2x58 x^{2} \sqrt[8]{x^{5}}
  1. Understand Expression: Understand the given expression and the properties of exponents and roots.\newlineThe given expression is x138\sqrt[8]{x^{13}}, which means the 88th root of xx raised to the 1313th power. We can use the property of exponents that states amn=amn\sqrt[n]{a^m} = a^{\frac{m}{n}} to rewrite the expression.
  2. Apply Exponent Property: Apply the exponent property to the given expression.\newlineUsing the property from Step 11, we can rewrite x138\sqrt[8]{x^{13}} as x138x^{\frac{13}{8}}.
  3. Simplify Exponent: Simplify the exponent by separating it into integer and fractional parts.\newlineThe exponent 138\frac{13}{8} can be split into 1+581 + \frac{5}{8}, which corresponds to x1×x58x^{1} \times x^{\frac{5}{8}}. This is because 1313 divided by 88 gives us 11 with a remainder of 55, so 138=1+58\frac{13}{8} = 1 + \frac{5}{8}.
  4. Rewrite Using Exponents: Rewrite the expression using the simplified exponents.\newlineNow we can express x138x^{\frac{13}{8}} as x1×x58x^{1} \times x^{\frac{5}{8}}, which is the same as x×x58x \times x^{\frac{5}{8}}.
  5. Convert Fractional Exponent: Convert the fractional exponent back to root form.\newlineThe term x58x^{\frac{5}{8}} can be rewritten as x58\sqrt[8]{x^5}, using the property from Step 11 in reverse.
  6. Combine Terms: Combine the terms to get the final equivalent expression.\newlineThe final expression is xx58x \cdot \sqrt[8]{x^{5}}.

More problems from Multiplication with rational exponents