Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0, the expression 
root(4)(x^(8)) is equivalent to

x

xroot(4)(x^(2))

x^(2)root(4)(x^(2))

x^(2)

Given x>0 , the expression x84 \sqrt[4]{x^{8}} is equivalent to\newlinex x \newlinexx24 x \sqrt[4]{x^{2}} \newlinex2x24 x^{2} \sqrt[4]{x^{2}} \newlinex2 x^{2}

Full solution

Q. Given x>0 x>0 , the expression x84 \sqrt[4]{x^{8}} is equivalent to\newlinex x \newlinexx24 x \sqrt[4]{x^{2}} \newlinex2x24 x^{2} \sqrt[4]{x^{2}} \newlinex2 x^{2}
  1. Understand the expression: Understand the expression x84\sqrt[4]{x^{8}}. The expression x84\sqrt[4]{x^{8}} means the 44th root of xx raised to the 88th power.
  2. Apply property of exponents: Apply the property of exponents for roots.\newlineThe 4th4^{\text{th}} root of x8x^8 can be written as (x8)14(x^8)^{\frac{1}{4}}.
  3. Simplify using power rule: Simplify the expression using the power of a power rule.\newlineUsing the power of a power rule, we multiply the exponents: (x8)14=x8(14)(x^8)^{\frac{1}{4}} = x^{8*\left(\frac{1}{4}\right)}.
  4. Calculate new exponent: Calculate the new exponent. 88 multiplied by 14\frac{1}{4} is 22, so x(8(14))=x2x^{(8*(\frac{1}{4}))} = x^2.
  5. Write final expression: Write the final simplified expression.\newlineThe equivalent expression for x84\sqrt[4]{x^{8}} is x2x^2.

More problems from Multiplication with rational exponents