Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0, the expression 
root(3)(x^(18)) is equivalent to

x^(5)root(3)(x^(2))

x^(6)

x^(6)root(3)(x^(2))

x^(5)

Given x>0 , the expression x183 \sqrt[3]{x^{18}} is equivalent to\newlinex5x23 x^{5} \sqrt[3]{x^{2}} \newlinex6 x^{6} \newlinex6x23 x^{6} \sqrt[3]{x^{2}} \newlinex5 x^{5}

Full solution

Q. Given x>0 x>0 , the expression x183 \sqrt[3]{x^{18}} is equivalent to\newlinex5x23 x^{5} \sqrt[3]{x^{2}} \newlinex6 x^{6} \newlinex6x23 x^{6} \sqrt[3]{x^{2}} \newlinex5 x^{5}
  1. Rewrite expression: We are given the expression x183\sqrt[3]{x^{18}} and we need to simplify it. The cube root of a number is the same as raising that number to the power of 13\frac{1}{3}. So, we can rewrite the expression as: x1813x^{18^{\frac{1}{3}}}
  2. Apply power rule: Now we apply the power rule for exponents, which states that (am)n=amn(a^{m})^{n} = a^{m*n}. In this case, we have: x1813x^{18*\frac{1}{3}}
  3. Multiply exponents: Multiplying the exponents, we get: x183x^{\frac{18}{3}}
  4. Divide and simplify: Dividing 1818 by 33, we find the simplified exponent: x6x^{6}
  5. Final expression: Since x > 0, x6x^{6} is a valid expression and there is no need for absolute value or further simplification. Therefore, the equivalent expression for x183\sqrt[3]{x^{18}} is x6x^{6}.

More problems from Multiplication with rational exponents