Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(216 xy^(6))

6x^(3)y^((1)/(2))

72x^(3)y^((1)/(2))

6x^((1)/(3))y^(2)

72x^((1)/(3))y^(2)

Given x>0 and y>0 , select the expression that is equivalent to\newline216xy63 \sqrt[3]{216 x y^{6}} \newline6x3y12 6 x^{3} y^{\frac{1}{2}} \newline72x3y12 72 x^{3} y^{\frac{1}{2}} \newline6x13y2 6 x^{\frac{1}{3}} y^{2} \newline72x13y2 72 x^{\frac{1}{3}} y^{2}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline216xy63 \sqrt[3]{216 x y^{6}} \newline6x3y12 6 x^{3} y^{\frac{1}{2}} \newline72x3y12 72 x^{3} y^{\frac{1}{2}} \newline6x13y2 6 x^{\frac{1}{3}} y^{2} \newline72x13y2 72 x^{\frac{1}{3}} y^{2}
  1. Find Cube Root of 216216: Simplify the cube root of 216216. We know that 216216 is a perfect cube, as 216=63216 = 6^3. Therefore, the cube root of 216216 is 66.
  2. Separate Product of Variables: Simplify the cube root of xy6xy^6. Since x > 0 and y > 0, we can separate the cube root of the product into the product of the cube roots: xy63=x3y63\sqrt[3]{xy^6} = \sqrt[3]{x} \cdot \sqrt[3]{y^6}.
  3. Simplify y6y^6: Simplify the cube root of y6y^6. We know that y6y^6 can be written as (y2)3(y^2)^3, which means the cube root of y6y^6 is y2y^2.
  4. Combine Results: Combine the simplified cube roots.\newlineNow we combine the results from Step 11 and Step 33 with the cube root of xx from Step 22: 6x3y26 \cdot \sqrt[3]{x} \cdot y^2.
  5. Write Final Expression: Write the final expression.\newlineThe final expression is 6x(1/3)y26x^{(1/3)}y^2.

More problems from Multiplication with rational exponents