Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the vector 
v has an initial point at 
(-1,3) and a terminal point at 
(-2,4), find the exact value of 
||v||.
Answer:

Given the vector v \mathbf{v} has an initial point at (1,3) (-1,3) and a terminal point at (2,4) (-2,4) , find the exact value of v \|\mathbf{v}\| .\newlineAnswer:

Full solution

Q. Given the vector v \mathbf{v} has an initial point at (1,3) (-1,3) and a terminal point at (2,4) (-2,4) , find the exact value of v \|\mathbf{v}\| .\newlineAnswer:
  1. Use Distance Formula: To find the magnitude (v\|\mathbf{v}\|) of the vector v\mathbf{v}, we need to use the distance formula, which is derived from the Pythagorean theorem. The distance formula for a vector with initial point (x1,y1)(x_1, y_1) and terminal point (x2,y2)(x_2, y_2) is:\newlinev=((x2x1)2+(y2y1)2)\|\mathbf{v}\| = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2)}
  2. Substitute Given Points: Substitute the given points into the distance formula:\newlineInitial point: (1,3)(-1, 3)\newlineTerminal point: (2,4)(-2, 4)\newlinev=((2(1))2+(43)2)||v|| = \sqrt{((-2 - (-1))^2 + (4 - 3)^2)}
  3. Simplify Expression: Simplify the expression inside the square root:\newline||v|| = \sqrt{((-2 + 1)^2 + (4 - 3)^2)}\(\newline||v|| = \sqrt{((-1)^2 + (1)^2)}\)
  4. Calculate Squares: Calculate the squares and sum them up:\newlinev=1+1||v|| = \sqrt{1 + 1}
  5. Take Square Root: Add the values inside the square root and then take the square root: v=2||v|| = \sqrt{2}

More problems from Transformations of absolute value functions: translations and reflections