Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln((root(4)(2))/(3)) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(243) \ln \left(\frac{\sqrt[4]{2}}{3}\right) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(243) \ln \left(\frac{\sqrt[4]{2}}{3}\right) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Given Substitutions: We are given the substitutions ln2=a\ln 2 = a, ln3=b\ln 3 = b, and ln5=c\ln 5 = c. We need to express ln(243)\ln\left(\frac{\sqrt[4]{2}}{3}\right) using these substitutions.\newlineFirst, let's rewrite the expression using properties of logarithms and roots.\newlineln(243)=ln(21/4)ln(3)\ln\left(\frac{\sqrt[4]{2}}{3}\right) = \ln(2^{1/4}) - \ln(3)
  2. Rewriting Expression: Now, we apply the power rule of logarithms, which states that ln(xy)=yln(x)\ln(x^y) = y \cdot \ln(x), to the first term.ln(214)=(14)ln(2)\ln(2^{\frac{1}{4}}) = \left(\frac{1}{4}\right) \cdot \ln(2)Since ln2=a\ln 2 = a, we can substitute aa in place of ln(2)\ln(2).(14)ln(2)=(14)a\left(\frac{1}{4}\right) \cdot \ln(2) = \left(\frac{1}{4}\right) \cdot a
  3. Applying Power Rule: Next, we look at the second term, ln(3)\ln(3). We have been given that ln3=b\ln 3 = b, so we can directly substitute bb for ln(3)\ln(3).\newlineln(3)=b\ln(3) = b
  4. Substituting Values: Now, we combine the two parts of the expression we have simplified: \newlineln(243)=14ab\ln\left(\frac{\sqrt[4]{2}}{3}\right) = \frac{1}{4} \cdot a - b
  5. Combining Simplified Parts: This is the final expression for ln(243)\ln\left(\frac{\sqrt[4]{2}}{3}\right) in terms of aa, bb, and cc. Note that cc is not used in this expression because ln(5)\ln(5) does not appear in the original problem.

More problems from Evaluate functions