Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln(81root(3)(e)) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(81e3) \ln (81 \sqrt[3]{e}) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(81e3) \ln (81 \sqrt[3]{e}) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Simplify Expression: We need to express ln(81e3)\ln(81\sqrt[3]{e}) in terms of aa, bb, and cc. First, let's simplify the expression inside the logarithm. The cube root of ee is e1/3e^{1/3}, and 8181 can be written as 343^4.\newlineSo, ln(81e3)\ln(81\sqrt[3]{e}) becomes ln(34e1/3)\ln(3^4 \cdot e^{1/3}).
  2. Apply Logarithm Properties: Now, we apply the properties of logarithms to separate the terms. The logarithm of a product is the sum of the logarithms, so ln(34e1/3)\ln(3^4 \cdot e^{1/3}) becomes ln(34)+ln(e1/3)\ln(3^4) + \ln(e^{1/3}).
  3. Apply Power Rule: Next, we apply the power rule of logarithms, which states that ln(xy)=yln(x)\ln(x^y) = y \cdot \ln(x). This gives us 4ln(3)+(13)ln(e)4 \cdot \ln(3) + \left(\frac{1}{3}\right) \cdot \ln(e).
  4. Substitute Given Values: Since ln(e)\ln(e) is equal to 11, the expression simplifies to 4×ln(3)+(13)×14 \times \ln(3) + \left(\frac{1}{3}\right) \times 1, which is 4×ln(3)+134 \times \ln(3) + \frac{1}{3}.
  5. Final Expression: Now, we substitute the given values for ln(2)\ln(2), ln(3)\ln(3), and ln(5)\ln(5). Since ln(3)=b\ln(3) = b, we replace ln(3)\ln(3) with bb in our expression. This gives us 4×b+134 \times b + \frac{1}{3}.
  6. Final Expression: Now, we substitute the given values for ln(2)\ln(2), ln(3)\ln(3), and ln(5)\ln(5). Since ln(3)=b\ln(3) = b, we replace ln(3)\ln(3) with bb in our expression. This gives us 4b+134 \cdot b + \frac{1}{3}.The final expression is 4b+134b + \frac{1}{3}. This is the value of ln(813(e))\ln(81\sqrt{3}(e)) in terms of aa, bb, and ln(3)\ln(3)11, although aa and ln(3)\ln(3)11 do not appear in the final expression.

More problems from Evaluate functions