Q. Given the substitutions ln2=a,ln3=b, and ln5=c, find the value of ln(34) in terms of a,b, and c.Answer:
Identify expression and substitutions: Identify the expression to be simplified and the given substitutions. ln(34) needs to be expressed in terms of a, b, and c. Given: ln(2)=a, ln(3)=b, ln(5)=c.
Rewrite using logarithm properties: Rewrite the expression ln(34) using the properties of logarithms.ln(34)=ln(4)−ln(3)
Express in terms of a, b, c: Express ln(4) and ln(3) in terms of ln(2) and ln(3). ln(4)=ln(22)=2ln(2)=2a ln(3)=ln(31/2)=(1/2)ln(3)=(1/2)b
Substitute values back: Substitute the values of ln(4) and ln(3) back into the original expression.ln(34)=2a−(21)b
Simplify if necessary: Simplify the expression if necessary.The expression is already simplified: ln(34)=2a−(21)b
More problems from Write variable expressions for arithmetic sequences