Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln((4)/(sqrt3)) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(43) \ln \left(\frac{4}{\sqrt{3}}\right) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(43) \ln \left(\frac{4}{\sqrt{3}}\right) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Identify expression and substitutions: Identify the expression to be simplified and the given substitutions. ln(43)\ln\left(\frac{4}{\sqrt{3}}\right) needs to be expressed in terms of aa, bb, and cc. Given: ln(2)=a\ln(2)=a, ln(3)=b\ln(3)=b, ln(5)=c\ln(5)=c.
  2. Rewrite using logarithm properties: Rewrite the expression ln(43)\ln\left(\frac{4}{\sqrt{3}}\right) using the properties of logarithms.\newlineln(43)=ln(4)ln(3)\ln\left(\frac{4}{\sqrt{3}}\right) = \ln(4) - \ln(\sqrt{3})
  3. Express in terms of aa, bb, cc: Express ln(4)\ln(4) and ln(3)\ln(\sqrt{3}) in terms of ln(2)\ln(2) and ln(3)\ln(3).
    ln(4)=ln(22)=2ln(2)=2a\ln(4) = \ln(2^2) = 2\ln(2) = 2a
    ln(3)=ln(31/2)=(1/2)ln(3)=(1/2)b\ln(\sqrt{3}) = \ln(3^{1/2}) = (1/2)\ln(3) = (1/2)b
  4. Substitute values back: Substitute the values of ln(4)\ln(4) and ln(3)\ln(\sqrt{3}) back into the original expression.\newlineln(43)=2a(12)b\ln\left(\frac{4}{\sqrt{3}}\right) = 2a - \left(\frac{1}{2}\right)b
  5. Simplify if necessary: Simplify the expression if necessary.\newlineThe expression is already simplified: ln(43)=2a(12)b\ln\left(\frac{4}{\sqrt{3}}\right) = 2a - \left(\frac{1}{2}\right)b

More problems from Write variable expressions for arithmetic sequences