Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln((e)/(3)) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(e3) \ln \left(\frac{e}{3}\right) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(e3) \ln \left(\frac{e}{3}\right) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Express ln(e3)\ln\left(\frac{e}{3}\right): Express ln(e3)\ln\left(\frac{e}{3}\right) using the properties of logarithms.\newlineWe know that ln(e)=1\ln(e) = 1 because the natural logarithm of ee to the power of 11 is ee. We also know that ln(3)=b\ln(3) = b. Using the quotient rule for logarithms, which states that ln(xy)=ln(x)ln(y)\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y), we can write ln(e3)\ln\left(\frac{e}{3}\right) as ln(e)ln(3)\ln(e) - \ln(3).
  2. Substitute known values: Substitute the known values into the expression.\newlineSubstitute ln(e)=1\ln(e) = 1 and ln(3)=b\ln(3) = b into the expression from Step 11.\newlineln(e3)=ln(e)ln(3)=1b\ln\left(\frac{e}{3}\right) = \ln(e) - \ln(3) = 1 - b
  3. Simplify expression: Simplify the expression.\newlineSimplify the expression to get the final answer in terms of aa, bb, and cc.\newlineln(e3)=1b\ln\left(\frac{e}{3}\right) = 1 - b\newlineSince there are no terms involving aa or cc, the expression remains as is.

More problems from Write and solve direct variation equations