Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function y=27x3sinxy=\sqrt[3]{27x}\sin x, find dydx\frac{dy}{dx} in any form.

Full solution

Q. Given the function y=27x3sinxy=\sqrt[3]{27x}\sin x, find dydx\frac{dy}{dx} in any form.
  1. Identify Function Components: Identify the function components to differentiate.\newlineThe function y=27x3sin(x)y = \sqrt[3]{27x}\sin(x) can be rewritten as y=(27x)13sin(x)y = (27x)^{\frac{1}{3}} \cdot \sin(x). This function is a product of two functions: u(x)=(27x)13u(x) = (27x)^{\frac{1}{3}} and v(x)=sin(x)v(x) = \sin(x).
  2. Apply Product Rule: Apply the product rule for differentiation.\newlineThe product rule states that the derivative of a product of two functions u(x)u(x) and v(x)v(x) is given by u(x)v(x)+u(x)v(x)u'(x)v(x) + u(x)v'(x). We will use this rule to find dydx\frac{dy}{dx}.
  3. Differentiate First Function: Differentiate the first function u(x)=(27x)13u(x) = (27x)^{\frac{1}{3}}. Using the power rule, the derivative of uu with respect to xx is u(x)=13(27x)23×27=9(27x)23u'(x) = \frac{1}{3}(27x)^{-\frac{2}{3}} \times 27 = 9(27x)^{-\frac{2}{3}}.
  4. Differentiate Second Function: Differentiate the second function v(x)=sin(x)v(x) = \sin(x).\newlineThe derivative of vv with respect to xx is v(x)=cos(x)v'(x) = \cos(x).
  5. Apply Product Rule: Apply the product rule using the derivatives from steps 33 and 44.\newline(dydx)=u(x)v(x)+u(x)v(x)=9(27x)23sin(x)+(27x)13cos(x)(\frac{dy}{dx}) = u'(x)v(x) + u(x)v'(x) = 9(27x)^{-\frac{2}{3}} \cdot \sin(x) + (27x)^{\frac{1}{3}} \cdot \cos(x).
  6. Simplify Expression: Simplify the expression if possible.\newlineThe expression is already in a simplified form, so we can state the final answer.\newlinedydx=9(27x)23sin(x)+(27x)13cos(x)\frac{dy}{dx} = 9(27x)^{-\frac{2}{3}} \cdot \sin(x) + (27x)^{\frac{1}{3}} \cdot \cos(x).

More problems from Domain and range of square root functions: equations